NUCLEAR DATA FOR CHARGED-PARTICLE MONITOR REACTIONS AND MEDICAL ISOTOPE PRODUCTION EVALUATION OF REACTION CROSS SECTION DATA FOR A FEW MEDICALLY IMPORTANT RADIONUCLIDES

M.HUSSAIN

Tuesday, August 06, 2013

Government College University Lahore, 54000, Lahore, Pakistan

- Introduction
- Scientific background
- Areas of investigation in CRP
- Positron emitters
- Research proposal
- Evaluation of ⁷⁶Br
- Conclusions

Introduction

Nuclear data needed for medical applications

Nuclear Structure Data

Nuclear Decay Data

Nuclear Reaction Data

Evaluated Nuclear Data

Purpose for the production of radionuclides

Diagnostics

Therapy

Theragnostics

Scientific Background

- IAEA-TECDOC-1211 (Charged particle database for medical radioisotope production: diagnostic radioisotopes and monitor reactions)
- IAEA-Technical report series -473 (Nuclear Data for the production of therapeutic radionuclides)
- IAEA, INDC(NDS)-0591,0596 (Summary reports of meetings)

Nuclear Model Calculations

- □ TALYS
- □ STAPRE
- □ ALICE-IPPE

The nuclear model calculations is an integral part of evaluation

Scientific Background at GCU Lahore

Applied Radiation and Isotopes 67 (2009) 1842-1854

A comprehensive evaluation of charged-particle data for production of the therapeutic radionuclide ¹⁰³Pd

M. Hussain^{a,b}, S. Sudar^b, M.N. Aslam^{a,b}, H.A. Shah^a, R. Ahmad^a, A.A. Malik^a, S.M. Qaim^{c,*}

^a Department of Physics, Government College University Lahore, Lahore 54000, Pakistan

^b Institute of Experimental Physics, University of Debrecen, H-4001 Debrecen, Hungary

^c Institut für Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

ARTICLE INFO

Article history: Received 10 February 2009 Received in revised form 16 June 2009 Accepted 29 June 2009

Keywords: ¹⁰³Pd Charged-particle-induced reaction Excitation function Nuclear model calculation Data evaluation Production yield calculation

ABSTRACT

¹⁰³Pd is an important radionuclide having a half-life of 16.99 d, which is suitable for internal radiation therapy, especially used for the treatment of prostate cancer. Its production in no-carrier-added form is done via charged-particle-induced reactions and the data are available in EXFOR library. We evaluated six charged-particle-induced reactions, namely ^{nat}Ag(p,x)¹⁰³Pd, ¹⁰³Rh(p,n)¹⁰³Pd, ¹⁰³Rh(d,2n)¹⁰³Pd, ¹⁰³Rh(d,2n)¹⁰³Pd, ¹⁰⁰Ru(\alpha,n)¹⁰³Pd, ¹⁰¹Ru(\alpha,2n)¹⁰³Pd, and ¹⁰²Ru(³He,2n)¹⁰³Pd process. In the first case, analysis was done up to about 100 MeV but in other cases only up to about 25 or 40 MeV. Furthermore, an evaluation of the data for the ^{nat}Ag(p,x)¹⁰³Ag process was also done since it may serve as a typical example for the ¹⁰³Ag \rightarrow ¹⁰³Pd precursor system. A statistical procedure supported by nuclear model calculations using the codes STAPRE, EMPIRE 2.19, and TALYS was used to validate and fit the experimental data. The recommended sets of data derived together with confidence limits are reported. The application of those data, particularly in the calculation of integral yields, is discussed. A comparison of the investigated routes from the viewpoint of practical applicability to the production of ¹⁰³Pd is given. Presently the ¹⁰³Rh(p,n)¹⁰³Pd reaction is the method of choice.

Scientific Background at GCU Lahore

Applied Radiation and Isotopes 68 (2010) 1760-1773

Evaluation of excitation functions of proton and deuteron induced reactions on enriched tellurium isotopes with special relevance to the production of iodine-124

M.N. Aslam^a, S. Sudár^b, M. Hussain^a, A.A. Malik^a, H.A. Shah^a, S.M. Qaim^{c,*}

^a Department of Physics, Government College University, Lahore 54000, Pakistan

^b Institute of Experimental Physics, University of Debrecen, H-4001 Debrecen, Hungary

^c Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

ARTICLE INFO

Article history: Received 8 September 2009 Received in revised form 2 February 2010 Accepted 2 March 2010

Keywords: lodine-124 Charged particle induced reaction Cross section Excitation function Nuclear model calculation Data evaluation Integral yield Radionuclidic purity

ABSTRACT

Cross-section data for the production of medically important radionuclide ¹²⁴I via five proton and deuteron induced reactions on enriched tellurium isotopes were evaluated. The nuclear model codes, STAPRE, EMPIRE and TALYS, were used for consistency checks of the experimental data. Recommended excitation functions were derived using a well-defined statistical procedure. Therefrom integral yields were calculated. The various production routes of ¹²⁴I were compared. Presently the ¹²⁴Te(p,n)¹²⁴I reaction is the method of choice; however, the ¹²⁵Te(p,2n)¹²⁴I reaction also appears to have great potential.

© 2010 Elsevier Ltd. All rights reserved.

- Monitor reactions for charged particle beams
- Discrepancies and new directions in data for production of diagnostic gamma emitters
- Production of novel positron emitters (direct production and production via generator isotopes)
- Production of therapeutic isotopes (alpha emitters, electron and X-ray emitters)
- Decay data

Status of production data of positron emitters

Positron Emitter	Status
⁵² Fe, ⁵⁵ Co,	Evaluation required
⁶¹ Cu, ⁶⁶ Ga, ⁶⁸ Ga	Evaluation required, re-measure and re- evaluate the positron intensity of ⁶⁶ Ga
⁷² As, ⁷³ Se, ⁷⁶ Br	Evaluation required, re-evaluate the positron intensities
⁸⁶ Y, ⁸⁹ Zr	Evaluation required, re-evaluate the positron intensities
^{94m} Tc	Re-evaluate the positron intensity
^{110m} ln	Include the production data
120j	Evaluation required, re-evaluate the positron intensities Tuesday, August 06, 2013

Selected positron emitters and nuclear reactions for

their production

Positron Emitter	Nuclear Reaction
⁵² Fe	⁵⁵ Mn(p,4n) ⁵² Fe, ^{nat} Ni(p,x) ⁵² Fe , ⁵² Cr(³ He,3n) ⁵² Fe
⁵⁵ Co	⁵⁸ Ni(p,a) ⁵⁵ Co, ⁵⁴ Fe(d,n) ⁵⁵ Co, ⁵⁶ Fe(p,2n) ⁵⁵ Co
⁶⁶ Ga	⁶⁶ Zn(p,n) ⁶⁶ Ga, ⁶³ Cu(a,n) ⁶⁶ Ga
⁷² As	^{nat} Ge(p,xn) ⁷² As
⁷⁶ Br	⁷⁶ Se(p,n) ⁷⁶ Br, ⁷⁷ Se(p,2n) ⁷⁶ Br, ⁷⁵ As(a,3n) ⁷⁶ Br
⁸⁶ Y	⁸⁶ Sr(p,n) ⁸⁶ Y, ⁸⁵ Rb(a,3n) ⁸⁶ Y, ⁸⁸ Sr(p,3n) ⁸⁶ Y
⁸⁹ Zr	⁸⁹ Y(p,n) ⁸⁹ Zr, ⁸⁹ Yr(d,2n) ⁸⁹ Zr
120	¹²⁰ Te(p,n) ¹²⁰ I, ¹²² Te(p,3n) ¹²⁰ I

Research proposal for the first year of CRP

1-	⁵⁸ Ni(p,α) ⁵⁵ Co
2-	⁵⁴ Fe(d,n) ⁵⁵ Co
3-	56Fe(p,2n)55Co
4-	66Zn(p,n)66Ga
5-	⁶³ Cu(α,n) ⁶⁶ Ga
6-	¹²⁰ Te(p,n) ¹²⁰ I
7-	¹²² Te(p,3n) ¹²⁰ I

Evaluation Methodology of Charged Particle Data

- Choice of charged particle induced reactions
 (target material, type and energy of charged particle,
 reaction cross section, competing reactions)
- Compilation of activation cross section data
 (EXFOR, recent publications)
- Scrutiny of data (reliability, consistency, etc.)

Normalization of data

- extrapolation to 100 % enrichment of target material
- adjustment of data to newly evaluated γ-ray intensities (NUDAT)
- normalization of data to monitor cross section values given in IAEA-TECDOC-1211.

Evaluation Methodology (continued)

- Ratio of experimental to calculated data plotted as a function of energy, followed by a polynomial fitting (with errors as the weighting factor) to estimate the f(E). Data beyond 3 σ limit were rejected. The 95 % confidence limits obtained for the f(E) were transformed back to cross section to estimate the uncertainty.
- Evaluation procedure repeated with all model calculations. Recommended data generated by averaging the normalized model calculations.

Evaluation Methodology (continued)

- Ratio of experimental to calculated data plotted as a function of energy, followed by a polynomial fitting (with errors as the weighting factor) to estimate the f(E). Data beyond 3 σ limit were rejected. The 95 % confidence limits obtained for the f(E) were transformed back to cross section to estimate the uncertainty.
- Evaluation procedure repeated with all model calculations. Recommended data generated by averaging the normalized model calculations.

Recently completed work related to CRP, ⁷⁶Br

Table 1

Investigated nuclear reactions for the production of ⁷⁶Br, Q-values and references.

Nuclear reaction	Q-value (MeV)	References
⁷⁶ Se(p,n) ⁷⁶ Br	- 5.74	Paans et al. (1980), Kovács et al. (1985), Levkovskij (1991), Hassan et al. (2004)
⁷⁷ Se(p,2n) ⁷⁶ Br	- 13.16	Janssen et al. (1980), Levkovskij (1991), Hassan et al. (2004), Spahn et al. (2009)
⁷⁸ Se(p,3n) ⁷⁶ Br	- 23.66	Levkovskij (1991), Spahn et al. (2009)
⁷⁵ As(³ He,2n) ⁷⁶ Br	- 3.95	Paans et al. (1980), Alfassi and Weinreich (1982), Misaelides et al. (1987)
⁷⁵ As(α,3n) ⁷⁶ Br	- 24.5	Nozaki et al. (1979), Paans et al. (1980), Alfassi and Weinreich (1982), Hermanne et al. (1994)
⁷⁹ Br(p,4n) ⁷⁶ Kr→ ⁷⁶ Br	- 32.05	Dikšić et al. (1979)

Table 2

Nuclear reactions leading to the formation of different bromine impurities during the production of ⁷⁶Br.

⁷⁶ Se(p,2n) ⁷⁵ Br -14.97 Paans et al. (1980), Kovács et al. (1985), Levkovskij (1991), Hassan et al. (2004) ⁷⁷ Se(p,n) ⁷⁷ Br -2.15 Johnson et al. (1958), Fedorec et al. (1977), Janssen et al. (1980), Levkovskij (1991), Hassan et al. (2004), Spahn et al. (20	Nuclear reaction
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	⁷⁶ Se(p,2n) ⁷⁵ Br ⁷⁷ Se(p,n) ⁷⁷ Br ⁷⁷ Se(p,3n) ⁷⁵ Br ⁷⁸ Se(p,2n) ⁷⁷ Br ⁷⁸ Se(p,4n) ⁷⁵ Br ⁷⁵ As(³ He,3n) ⁷⁵ Br ⁷⁵ As(α,2n) ⁷⁷ Br ⁷⁵ As(α,4n) ⁷⁵ Br ⁷⁹ De(n,2n) ⁷⁷ Kr ⁷⁷ Dr

Evaluated cross section data

Recommended cross sections for the $^{76}Se(p,n)^{76}Br$ reaction.

E (MeV)	σ (mb)	95% confidence limits		E(MeV)	σ (mb)	95% confidence limits	
		Upper	Lower			Upper	Lower
6.0	33	53	22	17.0	341	369	314
6.5	149	206	91	17.5	289	312	266
7.0	270	341	199	18.0	241	261	222
7.5	355	423	287	18.5	204	220	188
8.0	421	483	359	19.0	172	185	158
8.5	474	531	416	19.5	147	158	135
9.0	515	569	461	20	125	135	115
9.5	547	599	495	21	96	103	88
10.0	566	616	516	22	75	81	69
10.5	583	633	534	23	63	68	58
11.0	592	642	542	24	54	60	48
11.5	598	649	547	25	48	51	45
12.0	604	656	552	26	43	46	40
12.5	607	660	555	27	38	41	36
13.0	611	663	559	28	35	38	32
13.5	610	660	559	29	32	35	30
14.0	609	659	560	30	30	33	27
14.5	597	644	550	31	28	31	25
15.0	566	611	522	32	26	30	22
15.5	521	562	480	33	25	29	21
16.0	463	500	427	34	24	28	20
16.5	401	433	369	35	24	28	20

Calculated integral yields

Tuesday, August 06, 2013

Yield calculations of impurities

Fig. 26. Calculated integral yields for the $^{76}Se(p,2n)^{75}Br$ and $^{77}Se(p,3n)^{75}Br$ reactions.

Fig. 28. Calculated integral yields for the $^{75}\text{As}(^3\text{He},3n)^{75}\text{Br}$ and $^{75}\text{As}(\alpha,4n)^{75}\text{Br}$ reactions.

Comparison of production routes

Comparison of production routes of ⁷⁶Br*.

Nuclear process	Energy range (MeV)	Thick target yield of ⁷⁶ Br (MBq/µAh)			Radionuclidic impurities (%)		
(Suggested	Upper limit	Lower limit	⁷⁷ Br	⁷⁵ Вг	
⁷⁶ Se(<i>p</i> , <i>n</i>) ⁷⁶ Br	15 →7	402	437	366	< 0.1 ^a		
77Se(p,2n)76Br	28 → 18	712	786	638	2.44	55	
⁷⁸ Se(p,3n) ⁷⁶ Br	42 → 32	577	675	479	8.46	47.7	
75As(3He,2n)76Br	$20 \rightarrow 11$	12.8	14	11.7	1.2 ^b	195	
⁷⁵ As(α,3n) ⁷⁶ Br	$50 \rightarrow 40$	35.4	38.4	32.5	5.4	325	
79 Br(p,4n) 76 Kr \rightarrow 76 Br	62 → 47	30 ^c			< 0.1		

* All values calculated from the recommended excitation functions unless otherwise stated.

^a Assuming the averaged (p, γ) reaction cross section of < 1 mb.

^b Calculated from the measured cross sections of Alfassi and Weinreich (1982).

^c Assuming a two step removal of radiobromine—first removal about 17 h after EOB, second removal 25 h thereafter. The yield of ⁷⁶Br and the impurity level correspond to the second fraction.

Publication

Applied Radiation and Isotopes 69 (2011) 1490-1505

	Contents lists available at ScienceDirect	25	Applied Radiation and Isotopes
	Applied Radiation and Isotopes	***	
ELSEVIER	journal homepage: www.elsevier.com/locate/apradiso		The second second

Evaluation of excitation functions of proton, ³He- and α -particle induced reactions for production of the medically interesting positron-emitter bromine-76

M.N. Aslam^{a,b}, S. Sudár^c, M. Hussain^{a,b}, A.A. Malik^a, S.M. Qaim^{d,*}

^a Department of Physics, Government College University, Lahore 54000, Pakistan

^b Department of Physics, COMSATS Institute of Information Technology, Lahore, Pakistan

^c Institute of Experimental Physics, University of Debrecen, H-4001 Debrecen, Hungary

^d Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

ARTICLE INFO

Article history: Received 24 November 2010 Received in revised form 25 May 2011 Accepted 5 June 2011 Available online 14 June 2011

Keywords: Bromine-76 Nuclear reaction Excitation function Nuclear model calculation Integral yield Radionuclidic purity

ABSTRACT

Cross section data for production of the medically interesting radionuclide ⁷⁶Br ($T_{1/2}$ =16.2 h) via the proton induced reactions on ⁷⁶Se, ⁷⁷Se, ⁷⁸Se and ⁷⁹Br, and ³He- and α -particle induced reactions on ⁷⁵As were evaluated. The nuclear model codes STAPRE, EMPIRE and TALYS were used to check the consistency in the experimental data and a statistical procedure was applied to derive the recommended excitation functions. A comparison of various production routes of ⁷⁶Br (and of ⁷⁵Br) is presented.

© 2011 Elsevier Ltd. All rights reserved.

- Methodology developed will be used to evaluate charged particle induced reaction cross section data over a wide energy range (making use of a statistical procedure, supported by nuclear model calculations (EMPIRE, TALYS, ALICE-IPPE) to fit the data)
- Method will be applied to evaluate several p, d, ³He- and α-particle induced reactions used for the production of medically important radionuclides
- Recommended sets of data will be reported with 95 % confidence limits
- Data should be useful for optimization of production routes of the radionuclides at cyclotrons

List of few recent publications

- M. Hussain, S. Sudár, M.N. Aslam, H.A. Shah, R. Ahmad, A.A. Malik, S.M. Qaim, A comprehensive evaluation of charged particle data for production of the therapeutic radionuclide ¹⁰³Pd. (Applied Radiation and Isotopes, 67, 1842-1854, 2009).
- M. Hussain, S. Sudár, M.N. Aslam, R. Ahmad, A.A. Malik, S.M. Qaim, Evaluation of charged particle induced reaction cross section data for production of the important therapeutic radionuclide ¹⁸⁶Re. (Radiochim Acta, 98, 385-395, 2010).
- M. Hussain, S. Sudar, M.N. Aslam, R. Ahmad, A.A.Malik, H.A. Shah, S.M. Qaim, Comprehensive evaluations of charged particle data for production of the therapeutic radionuclides ¹⁰³Pd, ¹⁸⁶Re and ⁶⁷Cu. (J. Korean Physical Society, 59, 1987-1990, 2011).
- M.N. Aslam, S. Sudár, M. Hussain, A.A. Malik, H.A. Shah, S.M. Qaim, Charged particle induced reaction cross section data for production of the emerging medically important positron emitter ⁶⁴Cu; A comprehensive evaluation. (Radiochim Acta, 97, 669-686. 2009).
- M.N. Aslam, S. Sudár, M. Hussain, A.A. Malik, H.A. Shah, S.M. Qaim, Evaluation of excitation functions of proton and deuteron induced reactions on enriched tellurium isotopes with special relevance to the production of iodine-124. (Applied Radiation and Isotopes, 68, 1760-1773, 2010).
- M.N. Aslam, S. Sudár, M. Hussain, A.A. Malik, S.M. Qaim, Evaluation of excitation functions of ³He and α-particle induced reactions on antimony isotopes with special relevance to the production of iodine-124. (Applied Radiation and Isotopes, 69, 94-104, 2011).
- M.N. Aslam, S. Sudár, M. Hussain, A.A. Malik, S.M. Qaim, Evaluation of excitation functions of proton, 3He and α-particle induced reactions for production of the medically interesting positron emitter bromine-76. (Applied Radiation and Isotopes, 69, 1490-1505, 2011).

- IAEA and Dr. Roberto Capote Noy to show confidence on the newly established group.
- Prof. Dr.Dr.h.c.mult. Syed M.Qaim
- IAEA, for EMPIRE training
- ATOMKI and Dr. F.Tarkanyi for the placement of a PhD student
- Debrecen University and Dr. S.Sudar for teaching nuclear model calculations.

□ Thank you for your attention

Evaluation Methodology of Charged Particle Data

- Choice of charged particle induced reactions
 (target material, type and energy of charged particle,
 reaction cross section, competing reactions)
- Compilation of activation cross section data
 (EXFOR, recent publications)
- Scrutiny of data (reliability, consistency, etc.)

Normalization of data

- extrapolation to 100 % enrichment of target material
- adjustment of data to newly evaluated γ-ray intensities (NUDAT)
- normalization of data to monitor cross section values given in IAEA-TECDOC-1211.

Evaluation Methodology (continued)

Comparison of normalized data with the results of nuclear model calculations (STAPRE, EMPIRE, TALYS) over a given energy range

(model parameters varied within recommended limits (RIPL-2) to get good description of experimental data)

Basic consideration $\sigma_{ev}(E) = f(E) \sigma_{model}(E)$

where $\sigma_{ev}(E)$, $\sigma_{model}(E)$ and f(E) are the evaluated cross section, model calculated cross section and the energy dependent normalisation factor, respectively.

It appears a good assumption to approximate the f(E) with a third order polynomial function. The ORIGIN code of the OriginLab Corporation was used for the fitting procedure.

Evaluation Methodology (continued)

- Ratio of experimental to calculated data plotted as a function of energy, followed by a polynomial fitting (with errors as the weighting factor) to estimate the f(E). Data beyond 3 σ limit were rejected. The 95 % confidence limits obtained for the f(E) were transformed back to cross section to estimate the uncertainty.
- Evaluation procedure repeated with all model calculations. Recommended data generated by averaging the normalized model calculations.

Thank you for your attention