Measurement of Excitation Functions of charged particle (proton, alpha) induced reactions on ^{nat}Fe, ^{nat}Nb, ^{nat}Y, and ^{nat}Hf from MC50 Cyclotron

Guinyun Kim Kyungpook National University, Daegu, Korea

RESEARCH OBJECTIVES:

The objectives are to measure the production crosssections

for ^{nat}Fe(p,x), ^{nat}Nb(p,x), and ^{nat}Hf(p,x) reactions and
for ^{nat}Fe(α,x), ^{nat}Y(α,x), and ^{nat}W(α,x) reactions by using a stacked-foil activation technique at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Science.

processes

- > $^{nat}W(\alpha,x)^{182,182m,183,184,184m,186,188}$ Re, ^{187}W , and 182,183,184 Ta nuclear
- > $^{nat}Y(\alpha,x)^{90,92m}Nb$, $^{88,89}Zr$, $^{87m,87g,88,90m,91m}Y$ nuclear processes
- > $^{nat}Fe(\alpha,x)^{55,56,57,58}Co$, ^{61}Co , ^{56}Mn , $^{56,57}Ni$ nuclear processes
- ^{172m+g,173,177g}Lu nuclear processes
- \succ ^{nat}Hf(p,x)^{173,174,175,176,177,178m,180g}Ta, ^{173,175,179m,180m}Hf, and
- ➢ ^{nat}Nb(p,x)^{90,93m}Mo, ^{90,91m,92m,92g}Nb, ⁸⁸Zr, and ⁸⁸Y nuclear processes
- following nuclear processes from the threshold energy to about 40 MeV: $high natFe(p,x)^{55,56,57}Co$, ⁵¹Cr, and ^{52,54}Mn nuclear processes

The anticipated outcomes are the production cross-sections of the

ANTICIPATED OUTCOMES:

MC-50 Cyclotron:

Work Plan:

1. From December 1, 2012 to November 31, 2013

We will deliver the production cross sections of the $^{nat}Fe(p,x)^{55,56,57}Co$, ^{51}Cr , and $^{52,54}Mn$ nuclear processes and $^{nat}Fe(\alpha,x)^{55,56,57,58}Co$, ^{61}Co , ^{56}Mn , $^{56,57}Ni$ nuclear processes from threshold energy to about 40 MeV by using a stacked-foil activation technique at the MC-50 cyclotron.

2. From December 1, 2013 to November 31, 2014

We will deliver the production cross sections of the ^{nat}Nb(p,x) 90,93m Mo, 90,91m,92m,92g Nb, 88 Zr, and 88 Y nuclear processes and nat Y(α ,x) 90,92m Nb, 88,89 Zr, 87m,87g,88,90m,91m Y nuclear processes from threshold energy to about 40 MeV by using a stacked-foil activation technique at the MC-50 cyclotron.

3. From December 1, 2013 to November 31, 2014

We will deliver the production cross sections of the ^{nat}Hf(p,x)^{173,174,175,176,177,178m,180g}Ta, ^{173,175,179m,180m}Hf, and ^{172m+g,173,177g}Lu nuclear processes and ^{nat}W(α ,x)^{182,182m,183,184,184m,186,188}Re, ¹⁸⁷W, and ^{182,183,184}Ta nuclear processes from threshold energy to about 40 MeV by using a stacked-foil activation technique at the MC-50 cyclotron.

Experimental Set-up:

Gamma-ray Spectrometry:

Gamma-ray Spectrometry:

Gamma-ray spectrometry and Standard Sources

Nuclide	Half-life	Energy	Activity	
¹⁰⁹ Cd	462.6d	88.0336 keV	123.7 kBq	
⁵⁷ Co	271.79d	271.79d 122.06065 / 136.47350 keV		
¹³⁷ Cs	30.07y	661.657 keV	370.2 kBq	
⁵⁴ Mn	312.1 d	834.841 keV	6.9 kBq	
⁶⁰ Co	5.27 y	1173.228 / 1332.490 keV	266.3 kBq	
²² Na	2.6019 y	1274.537 keV	219.1 kBq	

Measurement of Production Cross sections for ^{nat}Fe(p,x)^{55,56,57}Co, ⁵¹Cr, and ^{52,54}Mn :

^{nat}Fe: ⁵⁴Fe(5.845%), ⁵⁶Fe(91.754%), ⁵⁷Fe(2.119%), ⁵⁸Fe(0.282%)

Decay data for the produced radionuclides

www.nndc.bnl.gov/chart/

Nuclide	Half-life	Decay mode (%)	E _γ (keV)	Ι _γ (%)	Contributing reactions	Q-value (MeV)	Threshold (MeV)
⁵¹ Cr	27.7010 d(11)	EC (100)	320.0824 (4)	9.9910(10)	⁵⁶ Fe(p, ⁶ Li) ⁵⁴ Fe(p, α2p)	-15.954 -27.452	16.241 27.965
⁵⁵ C0	17.53 h(3)	EC (100)	477.2 (2) 931.1 (3) 1316.6 (3) 1408.5 (3)	20.2 (17) 75 7.1 (3) 16.9 (8)	⁵⁴ Fe(p, γ) ⁵⁶ Fe(p, 2n) ⁵⁷ Fe(p, 3n) ⁵⁸ Fe(p, 4n)	5.06 -15.43 -23.08 -33.12	0.0 15.71 23.49 33.7
⁵⁶ Co	77.226 d(26)	EC (100)	846.770 (2) 1037.843 (3) 1238.288 (3)	99.9399 14.05 (4) 66.46 (12)	⁵⁶ Fe(p, n) ⁵⁷ Fe(p, 2n) ⁵⁸ Fe(p, 3n)	-5.35 -12.99 -23.04	5.44 13.22 23.44
⁵⁷ Co	271.74 d(6)	EC (100)	14.4129 (6) 122.06065(12) 136.47356(29)	9.16 (15) 85.60 (17) 10.68 (8)	⁵⁶ Fe(p, γ)	6.0	0
⁵² Mn	5.591 d(3)	EC (100)	744.233 (13) 935.544 (12) 1434.092 (17)	90.0 (8) 94.5 (9) 100.0 (6)	⁵⁴ Fe(p, αp) ⁵⁶ Fe(p, αn) ⁵⁷ Fe(p, α2n) ⁵⁸ Fe(p, α3n)	-18.682 -13.11 -20.75 -30.80	19.031 13.34 21.12 31.33
⁵⁴ Mn	312.05 d(4)	IT+EC (100)	834.848 (3)	99.9760(10)	⁵⁷ Fe(p, α)	-1.1	1.1

Identifications of gamma-ray peak

Identifications of gamma-ray peak

Formula of Cross sections calculations

Reaction Rate

Cross-Sections

Results for production cross sections

Proton energy	⁵¹ Cr[mb]	⁵² Mn[mb]	⁵⁴ Mn[mb]	⁵⁵ Co[mb]	⁵⁶ Co[mb]	⁵⁷ Co[mb]
[MeV]						
40.30 ± 0.38	90.10 ± 4.05	22.10 ± 1.89	200.00 ± 17.00	13.60 ± 1.21	23.30 ±2.09	0.68 ± 0.08
39.52 ± 0.40	79.40 ± 3.61	23.00 ± 1.97	194.00 ± 16.50	14.00 ± 1.24	23.20 ± 2.09	0.64 ± 0.08
38.71 ± 0.40	75.80 ± 3.47	23.80 ± 2.04	184.00 ± 15.70	14.70 ± 1.30	23.80 ± 2.14	0.73 ± 0.08
36.98 ± 0.43	54.50 ± 2.69	26.80 ± 2.29	169.00 ± 14.40	17.00 ± 1.50	25.20 ± 2.27	0.76 ± 0.08
36.12 ± 0.43	42.00 ± 2.23	27.40 ± 2.35	152.00 ± 13.00	17.80 ± 1.57	25.50 ± 2.29	0.83 ± 0.09
35.25 ± 0.44	31.80 ± 1.84	28.30 ± 2.42	134.00 ± 11.50	19.50 ± 1.71	25.70 ± 2.31	0.80 ± 0.08
33.39 ± 0.46	16.40 ± 1.39	29.40 ± 2.52	104.00 ± 9.04	24.20 ± 2.12	27.30 ± 2.47	1.00 ± 0.10
32.46 ± 0.47	12.40 ± 1.61	29.00 ± 2.48	80.40 ± 7.15	27.10 ± 2.37	28.30 ± 2.53	1.06 ± 0.10
31.50 ± 0.48		27.80 ± 2.38	62.90 ± 5.72	30.30 ± 2.64	29.50 ± 2.64	1.21 ± 0.11
29.48 ± 0.50		23.10 ± 1.99	25.40 ± 2.92	38.10 ± 3.34	31.40 ± 2.79	1.37 ± 0.12
28.48 ± 0.50		21.10 ± 1.82	13.50 ± 2.11	41.40 ± 3.60	32.90 ± 2.92	1.57 ± 0.14
27.46 ± 0.52		18.80 ±1.63	6.62 ± 0.58	43.90 ± 3.81	34.90 ± 3.08	1.71 ± 0.15
25.18 ± 0.56		12.30 ± 1.08	1.54 ± 0.16	45.50 ± 3.95	40.50 ± 3.53	2.20 ± 0.19
24.03 ± 0.60		8.62 ± 0.77	1.15 ± 0.14	44.90 ± 3.90	45.80 3.97	2.44 ± 0.21
22.82 ± 0.61		4.43 ± 0.42	0.96 ± 0.13	43.10 ± 3.74	53.30 ± 4.59	2.61 ± 0.23
20.15 ± 0.67			1.11 ± 0.16	36.10 ± 3.14	97.20 ± 8.26	3.43 ± 0.30
18.77 ± 0.70			1.41 ± 0.19	26.70 ± 2.33	138.00 ± 11.70	3.98 ± 0.34
17.31 ± 0.76			1.50 ± 0.21	10.80 ± 0.97	214.00 ± 18.10	4.96 ± 0.43
13.92 ± 0.89			1.22 ± 0.25		365.00 ± 30.80	9.10 ± 0.77
12.04 ± 0.99			0.85 ± 0.24		352.00 ± 29.70	12.00 ± 1.02
9.89 ± 1.15					263.00 ± 22.20	12.30 ± 1.04
7.31 ± 1.43					93.90 ± 7.98	7.71 ± 0.66
3.37 ± 2.50					5.80 ± 0.63	1.51 ± 0.13
0.43 ± 0.43						0.06 ± 0.01

