Yasuki Nagai

Special Group for RI Generation Technology using Accelerator Neutrons Japan Atomic Energy Agency, Tokai, Japan

Research Proposal:

Determine the neutron induced reaction cross sections of emerging diagnostic and therapeutic radionuclides as well as the well established and commonly used diagnostic and therapeutic radionuclides.

Special Group for RI Generation Technology using Accelerator Neutrons

Members

1) JAEA:

nuclear physicist: 3 nuclear data evaluator: 3 radio chemist: 5 radio chemist (technician): 2 accelerator scientist: 3

2) Industry

```
Chiyoda: 5 Sumitomo: 3 FUJIFILM:1
```


General background Concerning medical RI production in Japan

- ♦ in 1995, Japanese government decided to import short-lived radioisotopes
 - \Rightarrow in fact, most RIs used for nuclear medicine: imported
 - (141 PET cyclotron facility)
- ♦^{99m}Tc: 0.9 million diagnostic procedures/year
- ♦ shortage of ⁹⁹Mo
 - \Rightarrow Science Council of Japan (2008)
 - on the reliable & constant supply of RIs
 - \Rightarrow consider a possibility of
 - domestic production of RIs

⁹⁹Mo production using accelerator neutrons

⁹⁹Mo production using

¹⁰⁰Mo(n,2n)⁹⁹Mo

Y. Nagai & Y. Hatsukawa: J.Phys. Soc. Jpn. 3 (2009) 033201

Characteristic points:

- ♦ $\sigma(n,2n)$: large at $E_n \sim 14$ MeV, 10-times larger than that of ${}^{98}Mo(n,\gamma){}^{99}Mo$.
- $\sigma(n,X)$: radioactive waste production are quite small.
- **\bullet** intense $\phi(n)$: obtained using an accelerator.
- ◆¹⁰⁰Mo sample of over 200 g: used. (reused) {enrichment of ¹⁰⁰Mo ~90%}

14 MeV neutrons

Intense 14 MeV neutrons

40 MeV 5 mA deuteron beam (Super conducting linac) \Rightarrow 10 × 10¹³ n/(cm² sec)

Emitted neutrons from the reaction peak at forward angles with respect to the deuteron beam direction, and have an energy spectrum with a most probable energy of 14 MeV.

Fig. 2. Neutron energy spectra from a thick carbon target bombarded by 40 MeV deuterons at 10 laboratory angles.

M. Hagiwara et al. (2004)

⁹⁹Mo production using neutrons from C(*d*,*n*) reaction

99Mo requirement in Japan: 2250 Ci/week (domestic production) 40 MeV 5 mA $d + C \implies \sim 20\%$ of the demand in Japan (¹⁰⁰Mo : d=2 cm)

Exp. study of ⁹⁹Mo production using neutrons from ${}^{3}H(d,n)$

- 1) ⁹⁹Mo production: ${}^{100}Mo(n,2n){}^{99}Mo$
- 2) Separation of ^{99m}Tc from ¹⁰⁰MoO₃: Sublimation
- 3) Labeling efficiency

Quality of ^{99m}**Tc**

Labeling efficiency (an important factor in the compounding and dispensing of radiopharmaceuticals), was shown to be > 99% by formulating a radiopharmaceutical with the use of commercially available methylene diphosphonate (^{99m}Tc-MDP). The efficiency is above the USP requirement (>90%). {^{99m}Tc-MDP: for a bone scan in routine ^{99m}Tc scans}.

Fig. 3. Analysis of MDP labeled with 99m Tc separated from 99 Mo produced by 100 Mo(n, 2n) 99 Mo. Thin layer chromatograms on silica gel strips developed with acetone.

Y. Nagai et al., J. Phys. Soc. Japan, 80(2011)

Zevalin:⁹⁰Y-labelled radiopharmaceutical (for non-Hodgkin's lymphoma)

Accelerator neutrons

1) 90 Zr + n \Rightarrow 90 Y + p

Y.Nagai, O.Iwamoto, N.Iwamoto. T.Kin, M.Segawa, Y.Hatsukawa, and H.Harada: J. Phys. Soc. Japan, (2009)

⁶⁴Cu and ⁶⁷Cu productions using accelerator neutrons

Research Proposal:

Determine the neutron induced reaction cross sections of emerging diagnostic and therapeutic radionuclides as well as the well established and commonly used diagnostic and therapeutic radionuclides

 $^{100}Mo(n,2n)^{99}Mo, {}^{90}Zr(n,p)^{90}Y, {}^{64}Zn(n,p)^{64}Cu, {}^{67}Zn(n,p)^{67}Cu, {}^{68}Zn(n,x)^{67}Cu$ \Rightarrow

1) Fusion Neutronics Source (JAEA):

14 MeV neutrons from ${}^{3}H(d,n)$

2) Takasaki Ion Accelerators for Advanced Radiation Application (JAEA) and Cyclotron Radioisotope Center (Tohoku University)

14 MeV neutrons from C(d,n)