
Intermediate- and Longer-term Nuclear Data Requirements for Medical Applications

> Alan Nichols Department of Physics University of Surrey Guildford, UK & Manipal University Karnataka, India

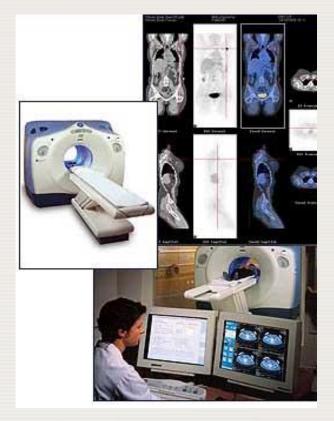
3 - 7 December 2012, IAEA, Vienna, Austria

1<sup>st</sup> RCM: Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production

# Nuclear Sciences and Applications: Serving Basic Human Needs



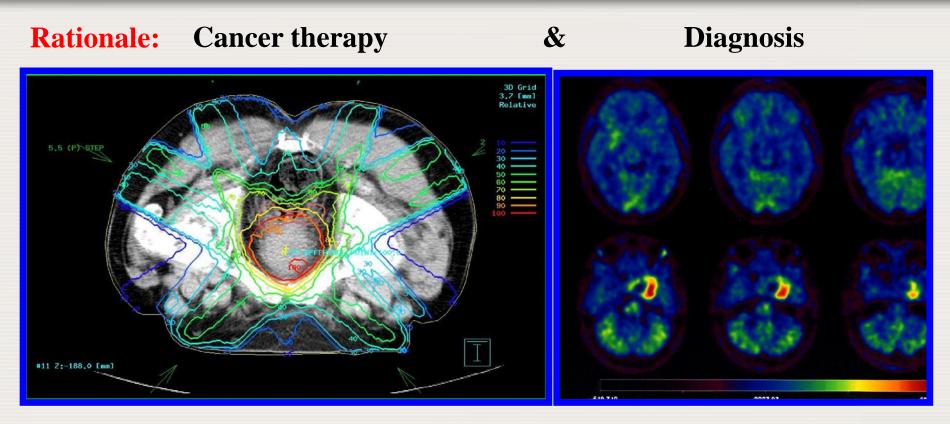
# **Atoms for Health: Disease Prevention and Control**




- Nutrition
- <u>Nuclear Medicine</u>
- <u>Radiobiology and</u> <u>Radiotherapy</u>
- <u>Dosimetry and Medical</u> <u>Physics</u>
- <u>Fighting Global Cancer</u>



# Nuclear Medicine


- Nuclear imaging techniques enable <u>accurate and detailed diagnoses</u>
- Optimized treatment of illnesses such as cancer and cardiovascular disease
- Objectives:
  - better integrate nuclear technology use and planning in disease treatment
  - improve human resource capacity (e.g., physicians, physicists, radiopharmacists)



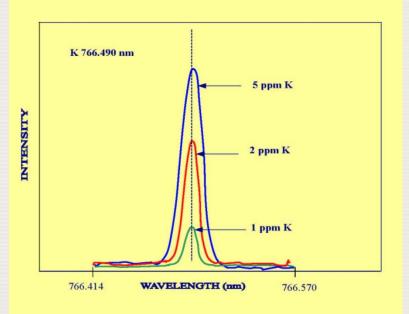
**Combined PET-CT machine** 



# **Nuclear Data for Medical Applications**



**Beneficiaries:** MS medical physicists, radioisotope producers, scientists ...


**Objectives:** Improve data for medical radioisotope production, and for patient dose delivery calculations in radiotherapy



**Implementation Mechanisms: Database Services** 

IAEA plays a key international role as a repository and provider of scientific data and knowledge

- Fission reactors
- Fusion
- ✓ <u>Medicine</u>
- ✓ Water resources
- Atmospheric and marine data



**ICP-AES SPECTRUM** 



#### High-precision Beta-intensity Measurements and Evaluations for Specific PET Radioisotopes

### Consultants' Meeting, IAEA Headquarters, Vienna, Austria 3-5 September 2008, IAEA report INDC(NDS)-0535

| Tadashi Nozaki | ex-RIKEN, Japan                              |
|----------------|----------------------------------------------|
| Syed Qaim      | Forschungszentrum Jülich, Germany [Chairman] |
| Deon Steyn     | iThemba Laboratory, South Africa             |
| Stephen Waters | ex-Cyclotron Unit, Hammersmith Hospital, UK  |

Roberto Capote: Alan Nichols IAEA Nuclear Data Section[Scientific Secretary]IAEA Nuclear Data Section[Rapporteur]

#### High-precision Beta-intensity Measurements and Evaluations for Specific PET Radioisotopes

Consultants' Meeting, IAEA Headquarters, Vienna, Austria 3-5 September 2008, IAEA report INDC(NDS)-0535

| Radionuclides – standard $\beta^+$ emitters                                           | Requirements                                                        |               |          |    |          |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|----------|----|----------|
|                                                                                       | t <sub>1/2</sub>                                                    | $P_{\beta^+}$ | $P_X$    | Ργ | evaluate |
| <sup>11</sup> C, <sup>13</sup> N, <sup>15</sup> O, <sup>18</sup> F                    | none – well-defined decay data                                      |               | a        |    |          |
| <sup>68</sup> Ge/ <sup>68</sup> Ga, <sup>82</sup> Sr/ <sup>82</sup> Rb                | none – well-defined <sup>68</sup> Ga and <sup>82</sup> Rb decay dat |               | cay data |    |          |
| Radionuclides - hadron therapy                                                        |                                                                     |               |          |    |          |
| <sup>10</sup> C, <sup>14</sup> O, <sup>17</sup> F, <sup>18</sup> Ne, <sup>19</sup> Ne | none – adequate decay data                                          |               |          |    |          |

#### High-precision Beta-intensity Measurements and Evaluations for Specific PET Radioisotopes

Consultants' Meeting, IAEA Headquarters, Vienna, Austria

3-5 September 2008, IAEA report INDC(NDS)-0535

| Radionuclides – non-standard $\beta^+$ emitters                                                                                                                                                                                                                                                                                                                                                                                                                          | Requirements                              |               |                |                   |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------|----------------|-------------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>t</i> <sub>1/2</sub>                   | $P_{\beta^+}$ | P <sub>X</sub> | Ργ                | evaluate     |
| <sup>57</sup> Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\checkmark$                              |               |                |                   |              |
| <sup>66</sup> Ga, <sup>72</sup> As, <sup>73</sup> Se, <sup>86</sup> Y, <sup>94</sup> Tc <sup>m</sup>                                                                                                                                                                                                                                                                                                                                                                     |                                           |               | $\checkmark$   |                   |              |
| <sup>75</sup> Br, <sup>77</sup> Kr                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |               |                |                   | (√)          |
| <u><sup>64</sup>Cu</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |               |                | √<br>1345.8-keV γ | (√)          |
| <sup>76</sup> Br, <sup>120</sup> I                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |               |                |                   |              |
| <sup>81</sup> Rb, <sup>82</sup> Rb <sup>m</sup> , <sup>83</sup> Sr                                                                                                                                                                                                                                                                                                                                                                                                       | inaccu                                    | urately       | defined        | decay data        | $\checkmark$ |
| <ul> <li><sup>22</sup>Na, <sup>30</sup>P, <sup>34</sup>Cl<sup>m</sup>, <sup>38</sup>K, <sup>45</sup>Ti, <sup>48</sup>V, <sup>49</sup>Cr, <sup>51</sup>Mn,</li> <li><sup>52</sup>Mn, <sup>52</sup>Mn<sup>m</sup>, <sup>52</sup>Fe, <sup>55</sup>Co, <sup>61</sup>Cu, <sup>90</sup>Nb, <sup>110</sup>In<sup>m</sup>,</li> <li><u>124</u>, <sup>152</sup>Tb, <sup>44</sup>Ti/<sup>44</sup>Sc, <sup>62</sup>Zn/<sup>62</sup>Cu, <sup>140</sup>Nd/<sup>140</sup>Pr</li> </ul> | none – reasonably well-defined decay data |               |                | ecay data         |              |

Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

Marie-Martine Bé Guinyun Kim Yasuki Nagai Meiring Nortier Syed Qaim Ferenc Tarkányi

Roberto Capote:

Laboratoire National Henri Becquerel, France Kyungpook National University, Republic of Korea Osaka University, Japan Los Alamos National Laboratory, USA [Rapporteur] Forschungszentrum Jülich, Germany [Chairman] Hungarian Academy of Sciences, Hungary

IAEA Nuclear Data Section [Scientific Secretary]

# Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

| <b>Cross sections</b>                                    | Decay data          | Additional comments                                                |
|----------------------------------------------------------|---------------------|--------------------------------------------------------------------|
| monitor reactions                                        |                     |                                                                    |
| <sup>27</sup> Al(p,x) <sup>22,24</sup> Na                | _                   | include isotope activity ratios up to beam energy of 800 MeV       |
| <sup>27</sup> Al(d,x) <sup>22,24</sup> Na                |                     | include isotope activity ratios                                    |
| <sup>27</sup> Al( <sup>3</sup> He,x) <sup>22,24</sup> Na |                     | higher energies up to 100 MeV                                      |
| $^{27}Al(\alpha,x)^{22,24}Na$                            |                     |                                                                    |
| <sup>nat</sup> Ti(d,x) <sup>46</sup> Sc                  | _                   | high energy deuterons                                              |
| $^{nat}Ni(d,x)^{56,58}Co$                                | _                   |                                                                    |
| <sup>nat</sup> Cu(p,x) <sup>58</sup> Co                  |                     | energies > 50 MeV                                                  |
| $^{nat}Cu(p,x)^{62,63,65}Zn$                             | <sup>62,63</sup> Zn | inconsistencies – resolve with respect to isotope activity ratios; |
|                                                          |                     | evaluate <sup>62,63</sup> Zn decay schemes                         |
| $^{nat}Cu(d,x)^{62,63,65}Zn$                             |                     |                                                                    |
| <sup>nat</sup> Mo(p,x) <sup>96g+m</sup> Tc               | _                   |                                                                    |
| _                                                        | <sup>61</sup> Cu    | evaluate <sup>61</sup> Cu decay scheme                             |

# Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

| <b>Cross sections</b>                       | Decay data | Additional comments                                             |  |
|---------------------------------------------|------------|-----------------------------------------------------------------|--|
| <u>diagnostic γ emitters</u>                |            |                                                                 |  |
| ${}^{90}Zr(n,p){}^{90g+m}Y$                 | _          | consider new measurements for data validation and production    |  |
| <sup>100</sup> Mo(n,2n) <sup>99</sup> Mo    | _          | consider new measurements for data validation and production    |  |
| <sup>100</sup> Mo(p,2n) <sup>99g+m</sup> Tc |            | evaluate                                                        |  |
| <sup>100</sup> Mo(p,pn) <sup>99</sup> Mo    |            | evaluate                                                        |  |
| $^{100}Mo(d,3n)^{99g+m}Tc$                  |            | evaluate                                                        |  |
| <sup>100</sup> Mo(d,p2n) <sup>99</sup> Mo   |            | evaluate                                                        |  |
| $^{112}Cd(p,2n)^{111}In$                    | _          | new measurements and evaluation                                 |  |
| $^{124}$ Xe(p,2n) $^{123}$ Cs               | _          | <sup>123</sup> I production - re-evaluate                       |  |
| <sup>124</sup> Xe(p,pn) <sup>123</sup> Xe   |            | <sup>123</sup> I production - re-evaluate                       |  |
| $^{124}$ Xe(p,x) $^{121}$ I                 |            | <sup>123</sup> I production – evaluate side reaction (impurity) |  |

#### Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production

## Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

| Decay data        | Additional comments                                                 |  |  |
|-------------------|---------------------------------------------------------------------|--|--|
|                   |                                                                     |  |  |
| <sup>52</sup> Fe? | no evaluation of decay scheme?                                      |  |  |
|                   |                                                                     |  |  |
|                   |                                                                     |  |  |
| -                 |                                                                     |  |  |
|                   |                                                                     |  |  |
|                   |                                                                     |  |  |
| -                 |                                                                     |  |  |
|                   |                                                                     |  |  |
| <sup>64</sup> Cu  | discrepancy in the intensity of weak gamma line                     |  |  |
| <sup>66</sup> Ga  | measure positron intensities, and evaluate                          |  |  |
|                   |                                                                     |  |  |
| -                 |                                                                     |  |  |
|                   |                                                                     |  |  |
| <sup>72</sup> As  | measure positron intensities, and evaluate                          |  |  |
|                   | <sup>52</sup> Fe?<br>-<br><sup>64</sup> Cu<br><sup>66</sup> Ga<br>- |  |  |

# Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

| <b>Cross sections</b>                        | Decay data                    | Additional comments                                 |
|----------------------------------------------|-------------------------------|-----------------------------------------------------|
| <u><math>\beta^+</math> emitters</u> (cont.) |                               |                                                     |
| $^{75}$ As(p,3n) $^{73}$ Se                  | <sup>73</sup> Se              | measure positron intensity, and evaluate            |
| $^{72}$ Ge( $\alpha$ ,3n) $^{73}$ Se         |                               |                                                     |
| $^{76}$ Se(p,n) $^{76}$ Br                   | <sup>76</sup> Br              | measure positron intensities, and evaluate          |
| $^{77}$ Se(p,2n) $^{76}$ Br                  |                               |                                                     |
| $^{75}$ As( $\alpha$ ,3n) $^{76}$ Br         |                               |                                                     |
| <sup>86</sup> Sr(p,n) <sup>86</sup> Y        | <sup>86</sup> Y               | measure positron intensities, and evaluate          |
| $^{88}$ Sr(p,3n) $^{86}$ Y                   |                               |                                                     |
| $^{85}$ Rb( $\alpha$ ,3n) $^{86}$ Y          |                               |                                                     |
| $^{89}$ Y(p,n) $^{89}$ Zr                    | <sup>89</sup> Zr              | evaluate <sup>89</sup> Zr decay scheme              |
| $^{89}$ Y(d,2n) $^{89}$ Zr                   | 0.4—                          |                                                     |
| $^{94}Mo(p,n)^{94}Tc^{m}$                    | <sup>94</sup> Tc <sup>m</sup> | evaluate <sup>94</sup> Tc <sup>m</sup> decay scheme |
| $^{92}Mo(\alpha, x)^{94}Tc^m$                |                               |                                                     |
| $111Cd(p,2n)^{110}In^{m}$                    | -                             | 1207 1                                              |
| $^{120}\text{Te}(p,n)^{120}\text{I}$         | $^{120}\mathrm{I}$            | evaluate <sup>120</sup> I decay scheme              |
| $^{122}$ Te(p,3n) $^{120}$ I                 |                               |                                                     |

#### Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production

# Consultants' Meeting, IAEA Headquarters, Vienna, Austria

21-24 June 2011, IAEA report INDC(NDS)-0591

| Cross sections                                | Decay data | Additional comments            |
|-----------------------------------------------|------------|--------------------------------|
| <u>generators</u>                             |            |                                |
| <sup>62</sup> Zn/ <sup>62</sup> Cu generator: | —          |                                |
| ${}^{63}Cu(p,2n){}^{62}Zn$                    |            |                                |
| <sup>68</sup> Ge/ <sup>68</sup> Ga generator: | _          |                                |
| <sup>nat</sup> Ga(p,xn) <sup>68</sup> Ge      |            | new measurements, and evaluate |
| <sup>69</sup> Ga(p,2n) <sup>68</sup> Ge       |            | new measurements, and evaluate |
| $^{71}$ Ga(p,4n) $^{68}$ Ge                   |            | new measurements, and evaluate |
| <sup>72</sup> Se/ <sup>72</sup> As generator: | _          |                                |
| $^{75}$ As(p,4n) $^{72}$ Se                   |            |                                |
| $^{nat}Br(p,x)^{72}Se$                        |            |                                |
| <sup>82</sup> Sr/ <sup>82</sup> Rb generator: | _          |                                |
| <sup>nat</sup> Rb(p,xn) <sup>82</sup> Sr      |            |                                |

## Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production

Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

| <b>Cross sections</b>                                                   | Decay data                   | Additional comments                                                                  |
|-------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------|
| <u>a emitters</u>                                                       |                              |                                                                                      |
| $^{229}$ Th( $\alpha$ ) $^{225}$ Ra( $\alpha$ ) $^{225}$ Ac( $\alpha$ ) | —                            |                                                                                      |
| decay chain to <sup>213</sup> Bi:                                       |                              |                                                                                      |
| <sup>232</sup> Th(p,x) <sup>225</sup> Ra                                |                              | new measurements up to 200 MeV, and evaluate                                         |
| <sup>232</sup> Th(p,x) <sup>225</sup> Ac                                |                              | new measurements up to 200 MeV, and evaluate                                         |
| <sup>226</sup> Ra(p,2n) <sup>225</sup> Ac                               |                              | additional measurements, and evaluate                                                |
| <sup>232</sup> Th(p,x) <sup>227</sup> Ac                                |                              | long-lived <sup>227</sup> Ac impurity (21.8 y), and contaminant of <sup>225</sup> Ac |
| $^{230}$ U( $\alpha$ ) $^{226}$ Th( $\alpha$ ) decay                    | <sup>230</sup> U decay chain |                                                                                      |
| chain:                                                                  |                              |                                                                                      |
| $^{231}$ Pa(d,3n) $^{230}$ U                                            |                              | new measurements, and evaluate; evaluate all decay schemes in                        |
|                                                                         |                              | decay chain                                                                          |
| $^{231}$ Pa(p,2n) $^{230}$ U                                            |                              | new measurements, and evaluate                                                       |
| $^{232}$ Th(p,3n) $^{230}$ Pa( $\beta^{-}$ ) $^{230}$ U                 |                              | <sup>230</sup> Pa $\beta^-$ branch of only 7.8% – new measurements, and evaluate     |
| $^{227}$ Th( $\alpha$ ) $^{223}$ Ra( $\alpha$ ) decay                   | —                            |                                                                                      |
| chain:                                                                  |                              |                                                                                      |
| <sup>232</sup> Th(p,x) <sup>227</sup> Th                                |                              | new measurements, and evaluate                                                       |

# Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

| <b>Cross sections</b>                                           | Decay data        | Additional comments                     |
|-----------------------------------------------------------------|-------------------|-----------------------------------------|
| electron and X-ray emitters                                     |                   |                                         |
| $^{130}$ Ba(n, $\gamma$ ) $^{131}$ Ba(EC) $^{131}$ Cs           | _                 |                                         |
| $^{131}$ Xe(p,n) $^{131}$ Cs                                    |                   |                                         |
| <sup>133</sup> Cs(p,3n) <sup>131</sup> Ba(EC) <sup>131</sup> Cs |                   |                                         |
| _                                                               | <sup>103</sup> Pd | evaluate <sup>103</sup> Pd decay scheme |
|                                                                 |                   |                                         |

Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

# **Summary**

Excitation functions: numerous - too many?

- measurements
- evaluations
- Decay data
- measurements
- evaluations comprehensive decay schemes?

# Improvements in Charged-particle Monitor Reactions and Nuclear Data for Medical Isotope Production Consultants' Meeting, IAEA Headquarters, Vienna, Austria 21-24 June 2011, IAEA report INDC(NDS)-0591

# **Summary**

Decay-data evaluations – ALN <sup>52</sup>Fe (?), <sup>61</sup>Cu, <sup>64</sup>Cu (?), <sup>62</sup>Zn, <sup>63</sup>Zn, <sup>66</sup>Ga, <sup>72</sup>As, <sup>73</sup>Se, <sup>76</sup>Br, <sup>86</sup>Y, <sup>89</sup>Zr, <sup>94</sup>Tc<sup>m</sup>, <sup>103</sup>Pd (+Auger), <sup>120</sup>I, and <sup>230</sup>U decay chain (<sup>230</sup>U( $\alpha$ )<sup>226</sup>Th( $\alpha$ )<sup>222</sup>Ra( $\alpha$ )<sup>218</sup>Rn( $\alpha$ )<sup>214</sup>Po( $\alpha$ )<sup>210</sup>Pb( $\beta$ <sup>-</sup>)<sup>210</sup>Bi( $\beta$ <sup>-</sup>)<sup>210</sup>Po( $\alpha$ )<sup>206</sup>Pb(stable))

already available on DDEP Web page: <sup>64</sup>Cu, <sup>66</sup>Ga, <sup>218</sup>Rn, <sup>214</sup>Po, <sup>210</sup>Pb, <sup>210</sup>Bi, <sup>210</sup>Po - re-evaluate all of them?

Technical Meeting IAEA Headquarters, Vienna, Austria 22-26 August 2011, IAEA report INDC(NDS)-0596

Marie-Martine Bé Brett Carlson Filip Kondev Ondrej Lebeda Alan Nichols Syed Qaim Deon Steyn Sandor Takács

Roberto Capote:

Laboratoire National Henri Becquerel, France Instituto Tecnológico de Aeronáutica (ITA), Brazil Argonne National Laboratory, USA Czech Academy of Sciences, Czech Republic University of Surrey, UK [Rapporteur] Forschungszentrum Jülich, Germany [Chairman] iThemba Laboratory, South Africa Hungarian Academy of Sciences, Hungary

IAEA Nuclear Data Section [Scientific Secretary]

> Technical Meeting IAEA Headquarters, Vienna, Austria 22-26 August 2011

# Nuclear Medicine: Nuclear Data Considerations Future applications in nuclear medicine?

diagnostic

new developments over next 15 years?

therapeutic

new developments over next 15 years?

If we answer the above question for nuclear medicine, we define our needs for nuclear data measurements and evaluations over both the intermediate- and longer-term timescales

Technical Meeting IAEA Headquarters, Vienna, Austria 22-26 August 2011

Radionuclides:

```
Diagnostic γ-ray emitters
```

 $\beta^+$  emitters

The rapeutic  $\beta^-$ , X-ray and  $\gamma$ -ray emitters

Therapeutic Auger-electron emitters

Therapeutic  $\alpha$  emitters

Proton and heavy-ion beam therapy

Technical Meeting IAEA Headquarters, Vienna, Austria 22-26 August 2011

Nuclear Data:

Cross-section production data

Decay data

Modelling?

Intermediate Term:

5 to 15 years  $\rightarrow$  up to 2025

#### Relevant recent past:

- Cross sections IAEA-NDS CRP 1995–2000: Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, IAEA-TECDOC-1211, May 2001
- Cross sections IAEA-NDS CRP 2003–2010: Nuclear Data for the Production of Therapeutic Radionuclides, IAEA Technical Reports Series No. 473, IAEA, Vienna, Austria, December 2011
- 3. Decay data IAEA-NDS CRP 1998-2005: Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications, IAEA-STI/PUB/1287, published as 2 volumes, May 2007
- 4. Decay data IAEA-NDS CRP 2005–2010: Updated Decay Data Library for Actinides, prepared in draft, IAEA, Vienna, Austria, to be published

#### Immediate past and future:

Cross sections and decay data - <u>one</u> further IAEA-NDS CRP proposed already based on:

- High-Precision Beta-Intensity Measurements and Evaluations for Specific PET Radioisotopes (see IAEA report INDC(NDS)-0535, 2008)
- Improvements in Charged-Particle Monitor Reactions and Nuclear Data for Medical Isotope Production (see IAEA report INDC(NDS)-0591, 2011)

Immediate past and future:

22-26 August 2011, IAEA Headquarters, Vienna, Austria

# Intermediate-term Nuclear Data Needs for Medical Applications: Cross Sections and Decay Data A.L. Nichols, S.M. Qaim and R. Capote Noy

IAEA report INDC(NDS)-0596, September 2011

# Technical Meeting IAEA Headquarters, Vienna, Austria 22-26 August 2011

#### **Diagnostic** γ-ray emitters

| Radionuclide                  | Requirements                                                                                                                                              | Comments                                                                                        |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| <sup>99</sup> Tc <sup>m</sup> | <pre><sup>100</sup>Mo(p,xn), (p,α), (d,xn);<br/>(γ,n), (γ,f);<br/>decay-data evaluated in<br/>previous CRP (IAEA-STI/PUB/1287);<br/>Auger electrons</pre> | Accelerator production; highly-<br>enriched <sup>100</sup> Mo (> 99%) should be<br>investigated |
| <sup>97</sup> Ru              | <sup>3</sup> He and <sup>4</sup> He on Mo                                                                                                                 | Limited application                                                                             |
| 123                           | See IAEA-TECDOC-1211 and<br>IAEA-STI/PUB/1287;<br>Auger electrons                                                                                         | Several production reactions and discrepancies to be studied in planned CRP                     |
| <sup>147</sup> Gd             | <sup>4</sup> He on Sm; proton on Eu                                                                                                                       | Special application in MRI +<br>SPECT                                                           |
| <sup>203</sup> Pb             |                                                                                                                                                           | Special application in tracer studies                                                           |

## β<sup>+</sup> emitters

| Radionuclide                                                                              | Requirements                                                                             | Comments                                                                                                                |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| <sup>11</sup> C, <sup>13</sup> N, <sup>14,15</sup> O,<br><sup>30</sup> P, <sup>38</sup> K | Activation cross sections for<br>proton-induced reactions<br>with energies up to 250 MeV | Cross sections well defined for $E_p < 20 \text{ MeV} \rightarrow \text{higher energies}$ of interest up to 250 MeV for |
|                                                                                           |                                                                                          | proton therapy                                                                                                          |
| <sup>34</sup> Cl <sup>m</sup>                                                             | Cross-section measurements and evaluations                                               | Low priority                                                                                                            |
| <sup>43</sup> Sc                                                                          | Cross-section measurements<br>and evaluations                                            | Good positron-decay<br>characteristics, but difficult to<br>produce                                                     |
| <sup>45</sup> Ti, <sup>48</sup> V, <sup>49</sup> Cr,<br><sup>90</sup> Nb                  | Cross-section measurements and evaluations                                               | Potentially important for radioimmunotherapy                                                                            |
| <sup>51,52</sup> Mn                                                                       | Cross-section measurements evaluations                                                   | Special application in MRI +<br>PET                                                                                     |
| <sup>52</sup> Fe, <sup>55</sup> Co, <sup>61</sup> Cu,                                     | Cross-section evaluations                                                                | Several novel applications                                                                                              |
| <sup>110</sup> In <sup>m</sup>                                                            |                                                                                          |                                                                                                                         |
| <sup>57</sup> Ni, <sup>72</sup> As, <sup>73</sup> Se,                                     | Cross-section measurements                                                               | Decay-data evaluation in planned CRP                                                                                    |
| <sup>94</sup> Tc <sup>m</sup>                                                             | and evaluations; β+ and X-ray emission probabilities                                     |                                                                                                                         |

## $\beta^+$ emitters (continued)

| Radionuclide                                      | Requirements                                | Comments                                           |
|---------------------------------------------------|---------------------------------------------|----------------------------------------------------|
| <sup>64</sup> Cu                                  | Cross sections – see previous               | Important $\beta^+$ emitter, especially            |
|                                                   | CRP (IAEA Technical Reports Series No. 473) | for radioimmunotherapy                             |
| <sup>66</sup> Ga                                  | Cross-section measurements                  | Decay-data evaluation in                           |
|                                                   | and evaluations; $\beta^+$ and X-ray        | planned CRP                                        |
|                                                   | emission probabilities                      |                                                    |
| <sup>68</sup> Ga                                  | Cross-section measurements                  | Direct production, as well as                      |
|                                                   | and evaluations                             | <sup>68</sup> Ge/ <sup>68</sup> Ga generator route |
| <sup>75</sup> Br, <sup>77</sup> Kr                | Cross-section measurements                  | Limited application                                |
| ,                                                 | and evaluations; $\beta^+$ and X-ray        |                                                    |
|                                                   | emission probabilities                      |                                                    |
| <sup>76</sup> Br, <sup>89</sup> Zr                | Cross-section measurements                  | Decay-data evaluation in                           |
| 51, 21                                            | and evaluations; $\beta^+$ and X-ray        | planned CRP                                        |
|                                                   | emission probabilities                      |                                                    |
| <sup>81</sup> Rb, <sup>82</sup> Rb <sup>m</sup> , | Cross-section measurements                  | Limited application                                |
|                                                   | and evaluations; $\beta^+$ and X–ray        |                                                    |
| <sup>83</sup> Sr,                                 | emission probabilities                      |                                                    |
| 86Y                                               | Cross-section evaluations; $\beta^+$        | Important positron emitter for                     |
|                                                   | and X-ray emission                          | quantification of dosimetry                        |
|                                                   | probabilities                               | calculations; decay-data                           |
|                                                   |                                             | evaluation in planned CRP                          |
|                                                   |                                             |                                                    |

# β<sup>+</sup> emitters (continued)

| Radionuclide      | Requirements                                                                               | Comments                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>95</sup> Ru  | <sup>3</sup> He and <sup>4</sup> He beam cross-<br>section measurements and<br>evaluations | Limited application; many<br>gamma rays, together with ~14%<br>β+emission                                                                              |
| 120 <b> </b> g    | Cross-section evaluations; β <sup>+</sup><br>and X-ray emission<br>probabilities           | Decay-data evaluation in planned CRP                                                                                                                   |
| 121               | Cross-section measurements<br>and evaluations                                              | Borderline – longer-term<br>consideration (easier to produce<br>than <sup>120</sup> I); many gamma rays,<br>together with ~11% β <sup>+</sup> emission |
| 124               | Cross sections – see previous<br>CRP (IAEA Technical Reports Series No. 473)               | Important positron emitter for<br>quantification of dosimetry<br>calculations                                                                          |
| <sup>152</sup> Tb | Cross-section measurements<br>and evaluations                                              | Potentially useful as lanthanide-<br>based positron emitter                                                                                            |

# β<sup>+</sup> emitters (continued): generators

| Radionuclide                                                              | Requirements                                                                                                                                | Comments                                                                                                                                                                              |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>44</sup> Ti/ <sup>44</sup> Sc                                        | Cross-section measurements<br>and evaluations; evaluation of<br>parent $T_{1/2}$                                                            | Long-lived parent (T <sub>1/2</sub> of 60 y);<br>difficult to produce                                                                                                                 |
| <sup>52</sup> Fe/ <sup>52</sup> Mn <sup>m</sup>                           | Cross-section and decay-data measurements and evaluations                                                                                   | Special application in MRI +<br>PET                                                                                                                                                   |
| <sup>62</sup> Zn/ <sup>62</sup> Cu                                        | Cross-section measurements<br>and evaluations; β <sup>+</sup> and X-ray<br>emission probabilities                                           | Decay-data evaluation in planned CRP                                                                                                                                                  |
| <sup>68</sup> Ge/ <sup>68</sup> Ga,<br><sup>82</sup> Sr/ <sup>82</sup> Rb | Cross-section measurements<br>and evaluations                                                                                               | Well-established systems, but<br>databases inadequate                                                                                                                                 |
| <sup>72</sup> Se/ <sup>72</sup> As                                        | Cross-section measurements<br>and evaluations; β+ and X-ray<br>emission probabilities                                                       | Decay-data evaluation in planned CRP                                                                                                                                                  |
| <sup>140</sup> Nd/ <sup>140</sup> Pr                                      | Cross-section measurements<br>and evaluations; Auger-electron<br>and other low-energy electron<br>data for <sup>140</sup> Nd microdosimetry | Radiotherapy + PET; parent<br><sup>140</sup> Nd(EC) to operate as<br>therapeutic radionuclide, while<br><sup>140</sup> Pr is positron emitter ( <i>in</i> -<br><i>vivo</i> generator) |

# Therapeutic $\beta^-$ , X-ray and $\gamma$ -ray emitters

| Radionuclide      | Requirements                                                                                                                                                        | Comments                                                                                                           |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <sup>47</sup> Sc  | Cross-section measurements<br>and evaluations                                                                                                                       | Low–energy β <sup>−</sup> emitter                                                                                  |
| <sup>67</sup> Cu  | Cross sections – see previous<br>CRP (IAEA Technical Reports Series No. 473);<br>decay-data measurements and<br>evaluation, particularly g.s. to<br>g.s. transition | Important radionuclide –<br>emission of low–energy β–<br>particles, and preparation of<br>organometallic complexes |
| <sup>103</sup> Pd | Cross sections – see previous<br>CRP (IAEA Technical Reports Series No. 473);<br>decay-data discrepancies –<br>measurements and evaluation;<br>Auger electrons      | Decay-data evaluation in planned CRP                                                                               |
| <sup>131</sup> Cs | Cross-section measurements<br>and evaluations                                                                                                                       | X-ray emitter                                                                                                      |
| <sup>131</sup> Ba | Cross-section measurements<br>and evaluations; decay-data<br>evaluation                                                                                             | X-ray emitter                                                                                                      |
| <sup>161</sup> Tb | <sup>160</sup> Gd(n,γ) <sup>161</sup> Gd(β <sup>-</sup> ) <sup>161</sup> Tb: decay-<br>data measurements and<br>evaluation                                          | Low–energy β− emitter                                                                                              |

# Therapeutic $\beta^-$ , X-ray and $\gamma$ -ray emitters (continued)

| Radionuclide                                       | Requirements                                                                                                               | Comments                                                                                             |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <sup>166</sup> Ho                                  | Cross sections and decay data -<br>see previous CRP (IAEA Technical Reports                                                | High-flux reactor required for double-neutron capture                                                |
|                                                    | Series No. 473 and IAEA-STI/PUB/1287);<br>require cross-section                                                            |                                                                                                      |
|                                                    | measurements and evaluation for ${}^{164}$ Dy(2n, $\gamma$ ) ${}^{166}$ Dy( $\beta^-$ ) ${}^{166}$ Ho                      |                                                                                                      |
| <sup>169</sup> Er                                  | Cross-section measurements and<br>evaluations, including spallation<br>beam cross sections;                                | Low–energy β <sup>–</sup> emitter                                                                    |
|                                                    | decay-data measurements and<br>evaluation                                                                                  |                                                                                                      |
| <sup>175</sup> Yb                                  | Cross-section measurements and<br>evaluations for charged-particle<br>reactions; decay-data<br>measurements and evaluation | Low–energy β <sup>–</sup> emitter                                                                    |
| <sup>191</sup> Os / <sup>191</sup> Ir <sup>m</sup> | Cross-section measurements and evaluations                                                                                 | Low-energy β <sup>-</sup> emitter for<br>radiotherapy + SPECT;<br>potential <i>in-vivo</i> generator |
| <sup>191</sup> Pt / <sup>191</sup> Ir <sup>m</sup> | Cross-section and decay-data measurements and evaluations                                                                  | X-ray emitter; potential <i>in-</i><br><i>vivo</i> generator                                         |

## **Therapeutic Auger-electron emitters**

| Radionuclide                        | Requirements                                                                                                                                                                                                                                                                                      | Comments                                                                                                    |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <sup>67</sup> Ga, <sup>111</sup> In | Cross sections evaluated in two<br>previous CRPs<br>(IAEA-TECDOC-1211 ( <sup>67</sup> Ga and <sup>111</sup> In), and IAEA Technical<br>Reports Series No. 473 ( <sup>67</sup> Ga));<br>Auger electrons may become an issue                                                                        | Both <sup>67</sup> Ga and <sup>111</sup> In<br>finding increased<br>application in internal<br>radiotherapy |
| <sup>71</sup> Ge                    | Cross-section measurements and<br>evaluations;<br>Auger electrons may become an issue                                                                                                                                                                                                             | Half-life is rather long at 11.4 d                                                                          |
| <sup>77</sup> Br                    | Cross-section evaluations; Auger<br>electrons may become an issue                                                                                                                                                                                                                                 |                                                                                                             |
| <sup>99</sup> Tc <sup>m</sup>       | Auger-electron (E <sub>e</sub> < 25 keV) and<br>other low-energy electron (E <sub>e</sub> < 1<br>keV) data for microdosimetry; decay-<br>data evaluated in previous CRP (IAEA-<br>STI/PUB/1287); further needs for cross-<br>section data will arise if produced by<br>charged-particle reactions | Regularly used for<br>diagnosis, but also<br>increased application in<br>therapeutics                       |
| <sup>103</sup> Pd                   | Cross sections evaluated in previous<br>CRP (IAEA-TECDOC-1211); decay-data<br>measurements and evaluation                                                                                                                                                                                         | Decay-data evaluation in planned CRP                                                                        |

## **Therapeutic Auger-electron emitters (continued)**

| Radionuclide                                                    | Requirements                                           | Comments                                      |
|-----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|
| 123                                                             | See IAEA-TECDOC-1211 and                               | Regularly used for diagnosis, but             |
| 1                                                               | IAEA-STI/PUB/1287;                                     | also increased application in                 |
|                                                                 | Auger electrons                                        | therapeutics; several production              |
|                                                                 |                                                        | reactions and discrepancies to be             |
|                                                                 |                                                        | studied in planned CRP                        |
| <sup>140</sup> Nd                                               | Cross-section evaluations of                           | Auger and EC decay; <i>in-vivo</i>            |
| ' '°NA                                                          | several reactions; Auger                               | generator ( <sup>140</sup> Pr) – see previous |
|                                                                 | electrons may become an                                | table (β <sup>+</sup> emitters: generators)   |
|                                                                 | issue                                                  |                                               |
| <sup>178</sup> Ta                                               | $^{176}$ Hf( $\alpha$ ,2n) $^{178}$ W(EC) $^{178}$ Ta; | Auger and EC decay; <i>in-vivo</i>            |
| ''°'Id                                                          | Auger electrons may become                             | generator ( <sup>178</sup> W)                 |
|                                                                 | an issue                                               |                                               |
| <sup>193</sup> Pt <sup>m</sup> , <sup>195</sup> Pt <sup>m</sup> | Cross-section                                          | Large number of Auger electrons               |
| ις, ις                                                          | measurements and                                       | emitted                                       |
|                                                                 | evaluations; Auger electrons                           |                                               |
|                                                                 | may become an issue                                    |                                               |
| <sup>197</sup> Hg                                               | Cross-section and decay-                               |                                               |
| ну                                                              | data measurements and                                  |                                               |
|                                                                 | evaluations; Auger electrons                           |                                               |
|                                                                 | may become an issue                                    |                                               |
|                                                                 |                                                        |                                               |

# Therapeutic $\alpha$ emitters

| Radionuclide                         | Requirements                                                                                                                                                                                                                                               | Comments                                                                                             |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <sup>149</sup> Tb                    | Cross-section measurements<br>and evaluations of spallation<br>and heavy-ion beam reactions                                                                                                                                                                | Emission of low-energy alpha<br>particles (< 4 MeV) – potentially<br>useful for special applications |
| <sup>211</sup> At/ <sup>211</sup> Po | Cross sections and decay data<br>evaluated in previous CRPs<br>(IAEA Technical Reports Series No. 473, and<br>"Updated Actinide Decay Data Library (to be<br>published))                                                                                   | Well-established therapeutic radionuclide                                                            |
| <sup>225</sup> Ac/ <sup>213</sup> Bi | Lack of cross-section data at<br>higher energies for spallation<br>reaction on <sup>232</sup> Th; decay chain<br>evaluated in previous CRP<br>("Updated Actinide Decay Data Library" (to be<br>published))                                                 | Potentially important<br>therapeutic radionuclide                                                    |
| <sup>227</sup> Ac/ <sup>223</sup> Ra | Inadequate cross-section data<br>for <sup>232</sup> Th(p,x) production of<br><sup>227</sup> Ac – measurements and<br>evaluation; <sup>223</sup> Ra decay data<br>evaluated in previous CRP<br>("Updated Actinide Decay Data Library" (to be<br>published)) | Impurity in <sup>225</sup> Ac production                                                             |
| <sup>230</sup> U/ <sup>226</sup> Th  | Cross-section studies within planned CRP; decay-data evaluations of α-decay chain                                                                                                                                                                          | Papers containing new decay-<br>data measurements presented<br>at ICRM2011 conference                |

Technical Meeting IAEA Headquarters, Vienna, Austria 22-26 August 2011

# **Proton beam therapy**:

- > non-elastic cross sections of C, N and O at  $E_p$  up to 250 MeV;
- > activation cross sections of residual nuclei ( $^{11}C$ ,  $^{13}N$ ,  $^{15}O$ ,  $^{30}P$  and  $^{38}K$  positron emitters)
- **Carbon beam therapy** complex fragmentation reactions  $\rightarrow$  difficult to prepare data sets
- **Fragmentation and production of light particles and residues**  $\rightarrow$  **require more precise models and validated parameter sets Proton beam therapy**  $\rightarrow$  **require more precise Monte-Carlo transport calculations** for dose deposition of variations in morphology or in structure arising from bone or implants

#### Technical Meeting IAEA Headquarters, Vienna, Austria 22-26 August 2011

#### Longer term:

Increased dynamic and quantitative positron tomography (PET) coupled with X-ray tomography (CT) and magnetic resonance imaging (MRI) for organ imaging

### Assessment of improved internal radiotherapy:

- > PET and therapy involving radioimmuno reactions
- > Auger-electron and  $\alpha$ -particle therapy at the cellular level

Positron emitters and therapeutic radionuclides – long-term possibilities:

- ➤ metallic-based positron emitters (e.g., Ti, Ga, Cu radionuclides) → developments in organometallic-complex chemistry
- ➤ improved microdosimetry → requirement to better characterise suitable lowenergy Auger-electron emitters

# **Nuclear Data Needs**

### Immediate future:

Planned IAEA-NDS CRP dedicated to cross sections and decay data for medical applications is based on:

High-Precision Beta-Intensity Measurements and Evaluations for Specific PET Radioisotopes (see IAEA report INDC(NDS)-0535, 2008)

Improvements in Charged–Particle Monitor Reactions and Nuclear Data for Medical Isotope Production (see IAEA report INDC(NDS)–0591, 2011)

Monitor reactions: <sup>22,24</sup>Na, <sup>46</sup>Sc, <sup>56,58</sup>Co, <sup>62,63,65</sup>Zn, <sup>96</sup>Tc<sup>m+g</sup>

**Reactions for diagnostic** γ emitters: <sup>99</sup>Tc<sup>m</sup>, <sup>111</sup>In, <sup>123</sup>I (<sup>123</sup>Cs, <sup>123</sup>Xe, <sup>121</sup>I production) **Reactions for novel** β<sup>+</sup> emitters: <sup>52</sup>Fe, <sup>55</sup>Co, <sup>61</sup>Cu, <sup>66,68</sup>Ga, <sup>72</sup>As, <sup>73</sup>Se, <sup>76</sup>Br, <sup>86</sup>Y, <sup>89</sup>Zr, <sup>94</sup>Tc<sup>m</sup>, <sup>110</sup>In<sup>m</sup>, <sup>120</sup>I

Reactions for generators: <sup>62</sup>Zn/<sup>62</sup>Cu, <sup>68</sup>Ge/<sup>68</sup>Ga, <sup>72</sup>Se/<sup>72</sup>As, <sup>82</sup>Sr/<sup>82</sup>Rb

Reactions for therapeutic isotopes:

>  $\alpha$  emitters - <sup>225</sup>Ra and <sup>225</sup>Ac production ( $\rightarrow$  <sup>213</sup>Bi); <sup>227</sup>Ac impurity

> electron and X-ray emitters  $- {}^{131}$ Cs (also  ${}^{131}$ Ba production)

Decay data evaluations: <sup>52</sup>Fe(?), <sup>61</sup>Cu, <sup>64</sup>Cu(?), <sup>62,63</sup>Zn, <sup>66</sup>Ga, <sup>72</sup>As, <sup>73</sup>Se, <sup>76</sup>Br, <sup>86</sup>Y, <sup>89</sup>Zr, <sup>94</sup>Tc<sup>m</sup>, <sup>103</sup>Pd, <sup>120</sup>I, and <sup>230</sup>U decay chain

# **Nuclear Data Needs**

#### Intermediate- and longer-term considerations

Further need for future IAEA-NDS CRP(s) dedicated to cross sections and decay data for medical applications based on recommendations:

# Intermediate-term Nuclear Data Needs for Medical Applications: Cross Sections and Decay Data

A.L. Nichols, S.M. Qaim and R. Capote Noy

22-26 August 2011, IAEA Headquarters, Vienna, Austria IAEA report INDC(NDS)-0596, September 2011

# Previous tables refer

# **Nuclear Data Needs**

#### Intermediate- and longer-term considerations

Previous assessments and recommendations of INDC(NDS)-0596 have also been presented at an IAEA Technical Meeting, as described in NDS policy document:

# Long-term Needs for Nuclear Data Development A. Plompen

2-4 November 2011, IAEA Headquarters, Vienna, Austria IAEA report INDC(NDS)-0601, January 2012

Important Policy Document for IAEA Nuclear Data Section over next 5 to 15 years, up to 2025 (approximately 70%– 80% of future programme beyond next 5 years)