Cross Section measurements at LANL: ²³²Th + p

Meiring Nortier

Los Alamos National Laboratory, U.S.A.

Operated by Los Alamos National Security, LLC for NNSA

IAEA Research Coordination Meeting- Dec 2012

Slide 1

Outline

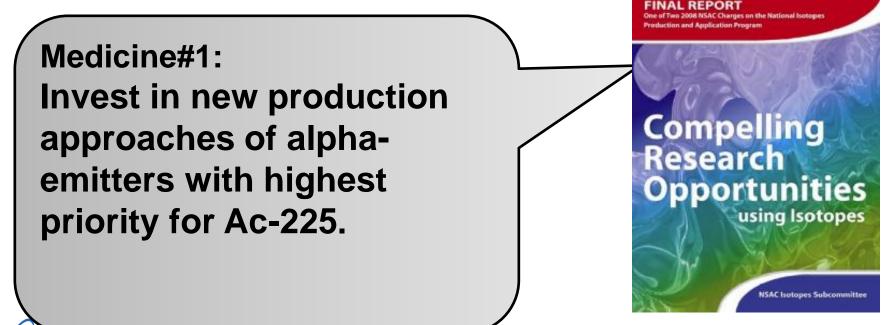
Basic measurement approach

Cross sections for ²³²Th + p

- Energies: 800 MeV and 40-200 MeV
- Primary Isotopes of interest: ²²⁵Ra, ²²⁵Ac and ²²⁷Ac, ²²⁷Th, ²²³Ra

Comparison with theory

- Efforts at ORNL and Fermi Lab
- > Ongoing efforts at LANL



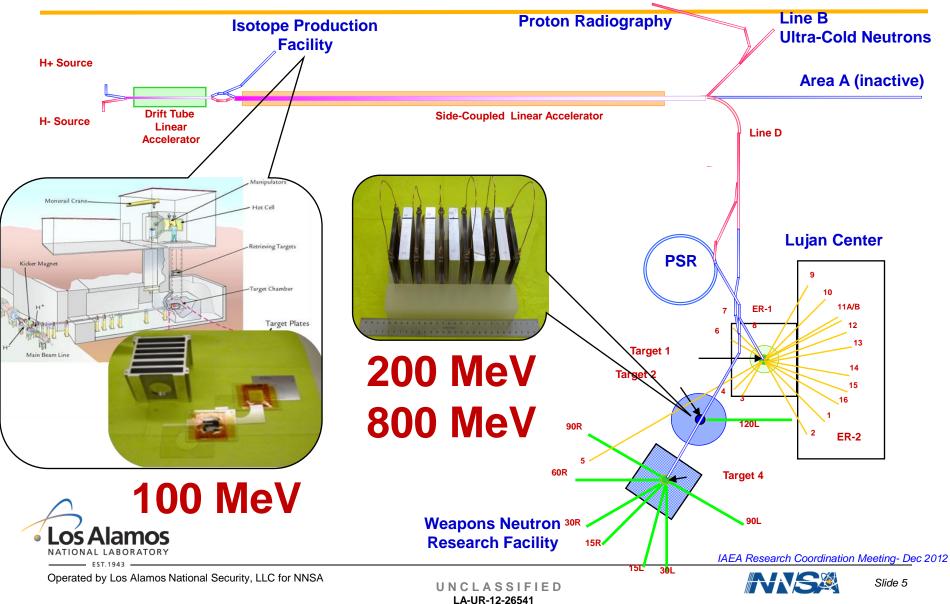
Operated by Los Alamos National Security, LLC for NNSA

Why Ac-225 and Ra-223?

First of 6 Recommendations to the DOE by the *Isotopes Subcommittee* of the *Nuclear Science Advisory Committee* (NSAC)

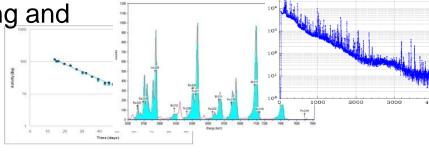
Operated by Los Alamos National Security, LLC for NNSA

Basic Measurement Approach at LANL


- Apply the well-known stacked foil technique
- Target foils and proton fluence monitor foils are irradiated with proton beams having primary energies of 100, 200 and 800 MeV
- Measurements cover the energy range up to 800 MeV

Operated by Los Alamos National Security, LLC for NNSA

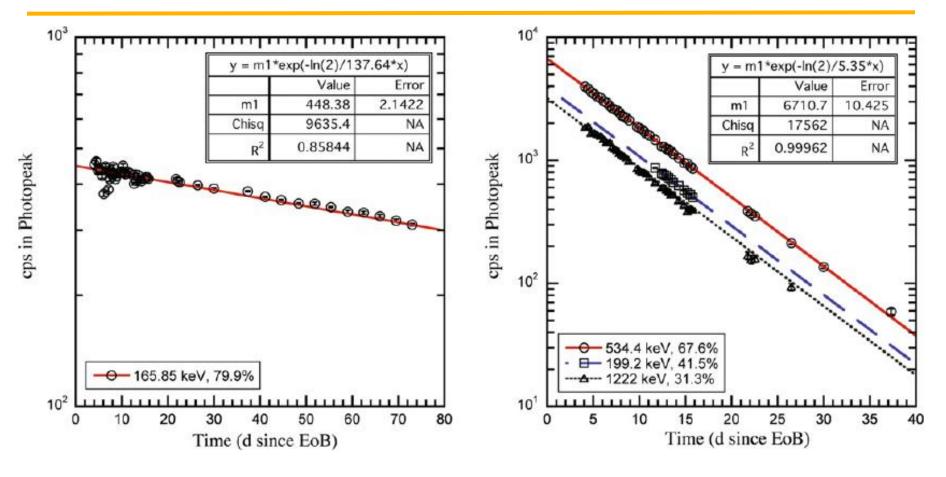
Irradiations are conducted at WNR and IPF 100 nA, 30-60 min



Radio-assay and Chemistry - Samples are assayed via various counting methods

- □ Use primarily non destructive γ counting and data analysis as well as α counting capabilities of Chemistry Division's world-class Count Room
- Sometimes the γ-γ coincidence counting capability of LANCE's GEANIE detector is utilized in parallel with other nondestructive counting
- When required, chemical separations are performed using Chemistry Division's radiochemistry expertise

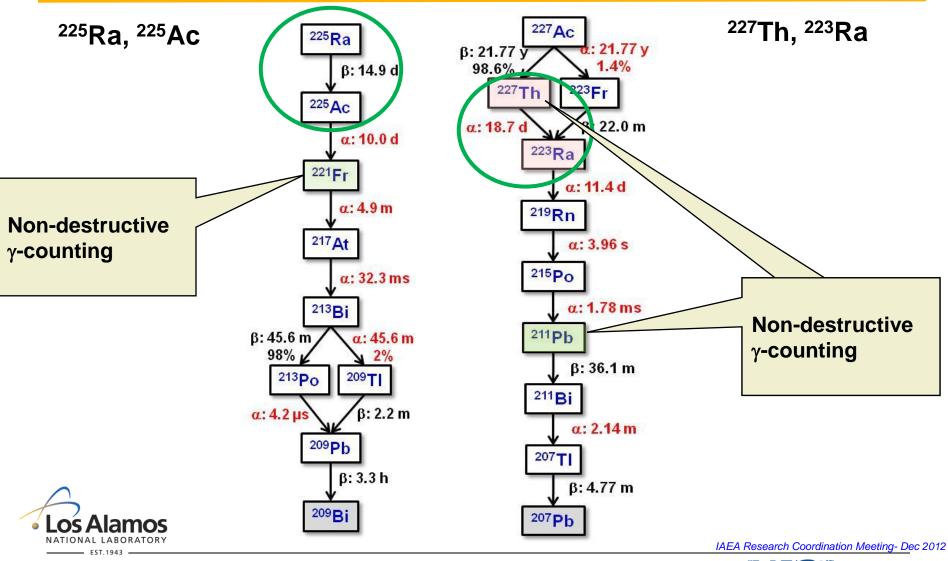
Operated by Los Alamos National Security, LLC for NNSA



Slide 6

Decay of isotopes is followed over time to identify residuals and extract accurate production cross sections

J.W. Engle et al. / Nuclear Physics A 893 (2012) 87–100



Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LA-UR-12-26541 IAEA Research Coordination Meeting- Dec 2012

Isotopes of interest in recent measurements

Operated by Los Alamos National Security, LLC for NNSA

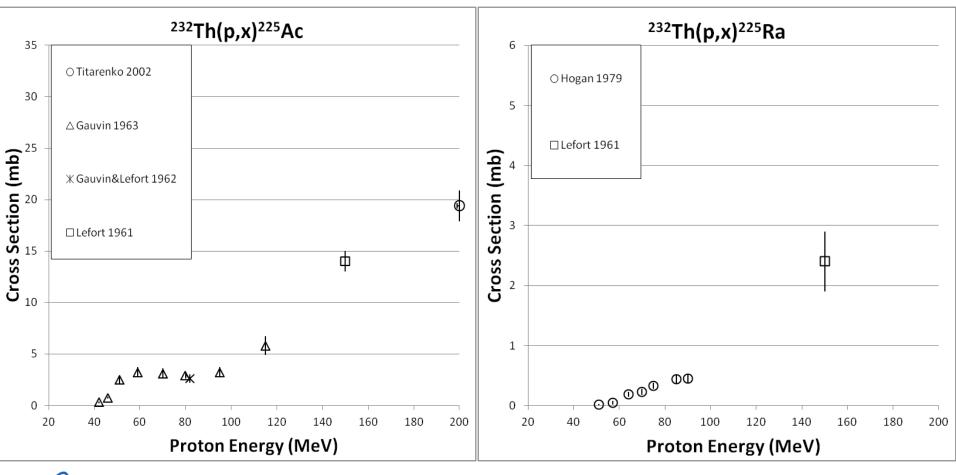
Production Cross Sections at 800 MeV

Reaction	LANL Cross Section (mb)	Counting Method	Literature value (mb)	Theoretical values (CEM) (mb)
²³² Th(p,x) ²²⁵ Ac	14.4 ± 1	γ, α	20.3 ± 5.1*	15.0
²³² Th(p,x) ²²⁵ Ra	3.4 ± 0.4	$\gamma_{ ext{indirect}}, \ lpha_{ ext{indirect}}$	None	1.54
²³² Th(p,x) ²²⁷ Ac	19.5 ± 0.7	α	None	11.0
²³² Th(p,x) ²²⁷ Th ²³² Th(p,x) ²²³ Ra	12.8 ± 1.1 5.8 ± 0.6	γ, α γ, α	None None	18.6 3.1

*Titarenko *et al.* (2002), INDC(CCP)-434

New data for ^{223,225}Ra, ²²⁷Ac, and ²²⁷Th

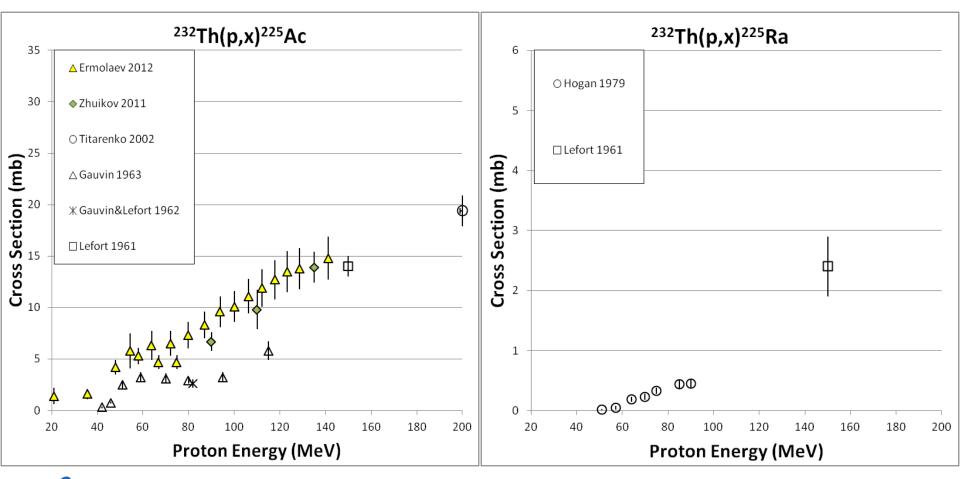
J.W. Weidner et al. / Applied Radiation and Isotopes 70 (2012) 2590–2595



Operated by Los Alamos National Security, LLC for NNSA

IAEA Research Coordination Meeting- Dec 2012

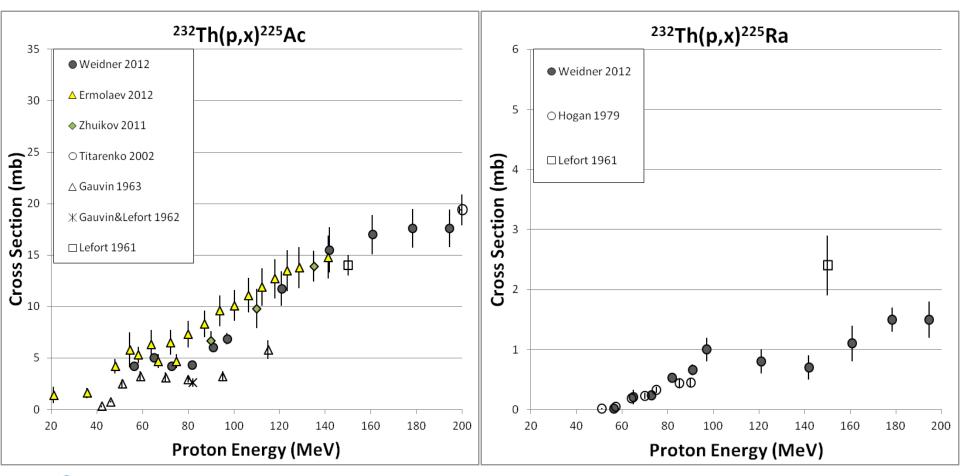
Production Cross Sections below 200 MeV Existing Data for Ac-225 and Ra-225



Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LA-UR-12-26541

Production Cross Sections below 200 MeV Existing Data for Ac-225 and Ra-225



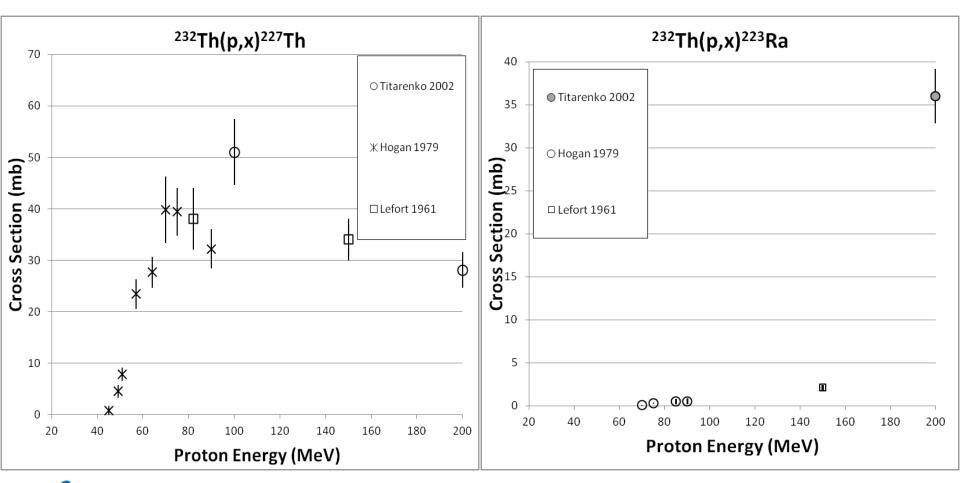
Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LA-UR-12-26541

Production Cross Sections below 200 MeV LANL Data for Ac-225 and Ra-225

J.W. Weidner et al. / Applied Radiation and Isotopes 70 (2012) 2602–2607

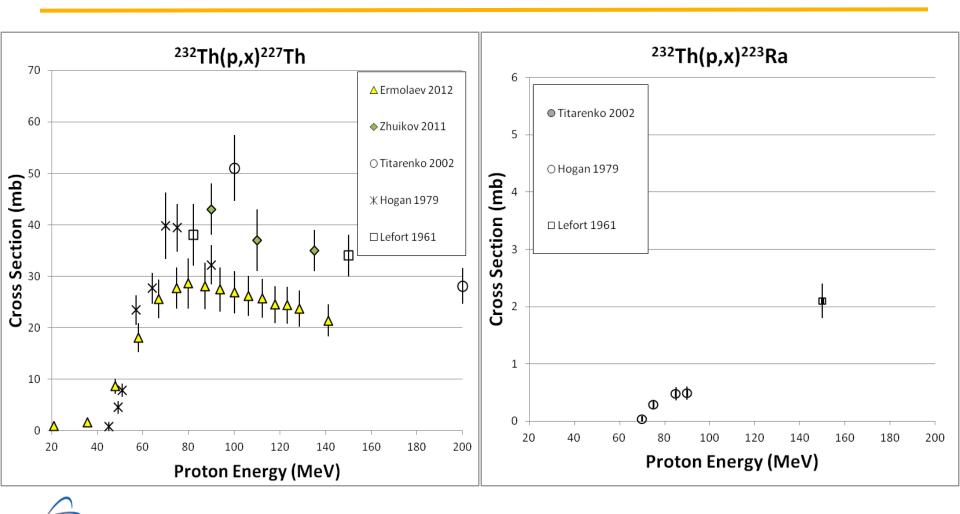
NATIONAL LABORATORY


Operated by Los Alamos National Security, LLC for NNSA

IAEA Research Coordination Meeting- Dec 2012

Slide 12

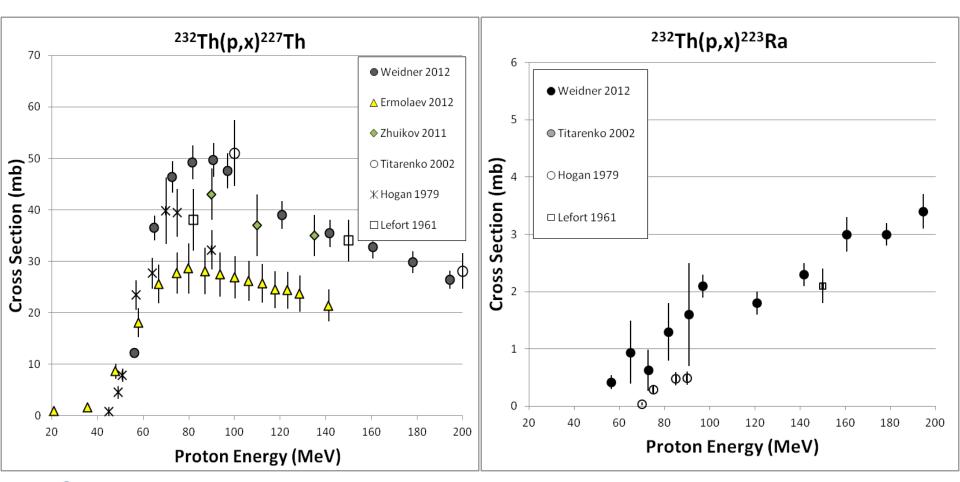
Production Cross Sections below 200 MeV Existing Data for Th-227 and Ra-223



Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LA-UR-12-26541

Production Cross Sections below 200 MeV Existing Data for Th-227 and Ra-223

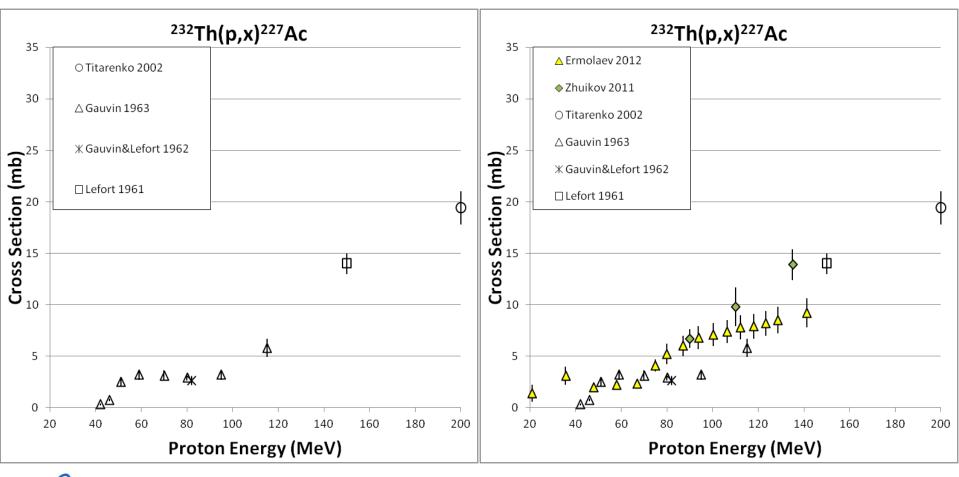

Los Alamos
 NATIONAL LABORATORY
 EST. 1943

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LA-UR-12-26541 IAEA Research Coordination Meeting- Dec 2012

Production Cross Sections below 200 MeV LANL Data for Th-227 and Ra-223

J.W. Weidner et al. / Applied Radiation and Isotopes 70 (2012) 2602–2607

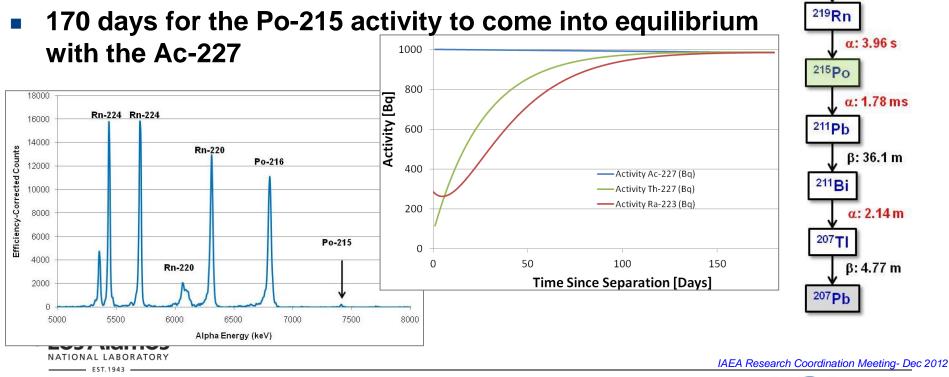

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LA-UR-12-26541 IAEA Research Coordination Meeting- Dec 2012

Production Cross Sections below 200 MeV Existing Data for Ac-227

LA-UR-12-26541


Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Ac-227 (21.7 y) Cross Sections Below 200 MeV α-counting and analysis

- LANL measurements are still in progress
- Ac-227 activity at EOB is based upon the measured Po-215 activity obtained from alpha spectroscopy
- Requires chemical separation prior to counting

227 Ac

223**Ra**

β: 21.77 v

98.6%

a: 18.7

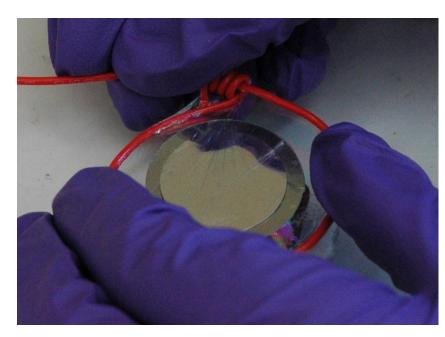
227

21.77 y

1.4%

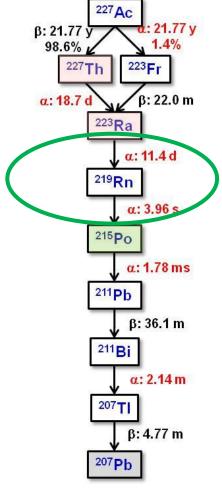
B: 22.0 m

Slide 17

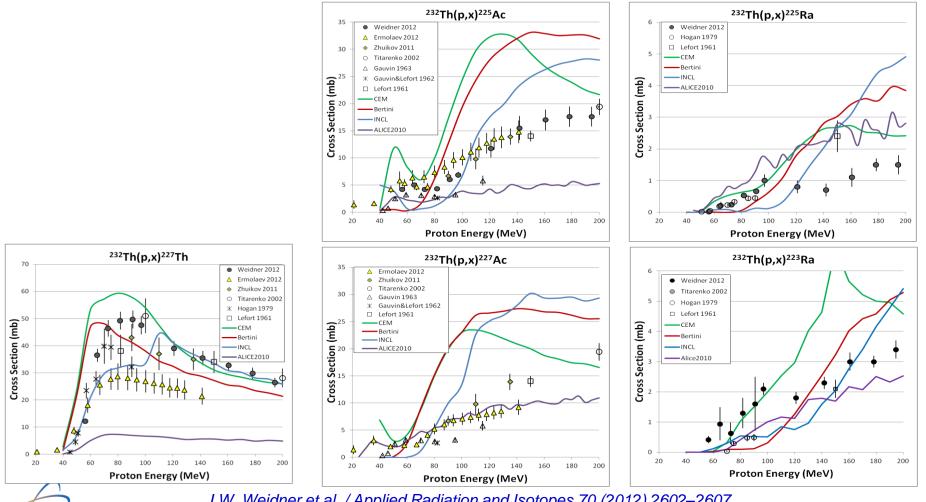

223Fr

. α: 11.4 d

Operated by Los Alamos National Security, LLC for NNSA


Ac-227 (21.7 y) Cross Sections Below 200 MeV α-counting and analysis

- Extra care must be taken in quantifying Po-215
- Po-215 forms via decay of gaseous Rn-219
- To prevent the loss of Rn-219, a very thin polymer membrane is applied to the counting sample


Operated by Los Alamos National Security, LLC for NNSA

IAEA Research Coordination Meeting- Dec 2012

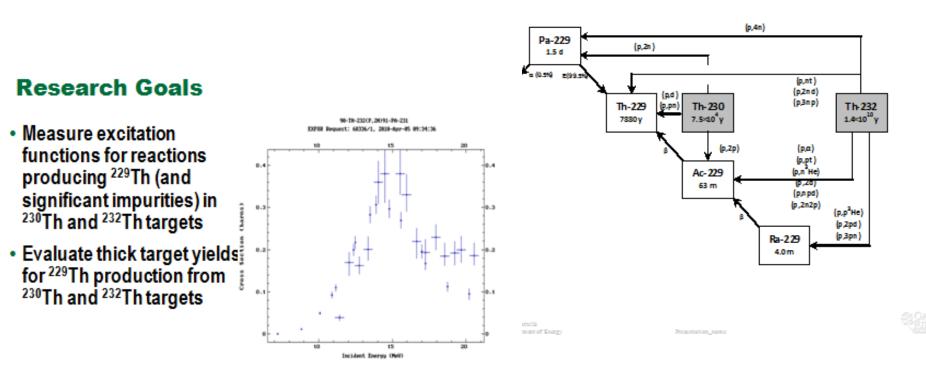
Comparison of Theory with Experiment (<200 MeV)

J.W. Weidner et al. / Applied Radiation and Isotopes 70 (2012) 2602-2607

EST. 1943

NATIONAL LABORATORY

05


Operated by Los Alamos National Security, LLC for NNSA

Other Measurement Efforts ²²⁹Th production at ORNL (<40 MeV)

^{230,232}Th Proton Bombardment

Slides Courtesy of Saed Mirzadeh

Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LA-UR-12-26541 IAEA Research Coordination Meeting- Dec 2012

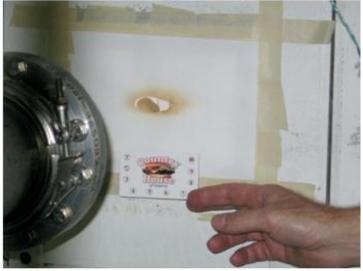
Other Measurement Efforts ²²⁵Ac production at Fermi Lab (8 GeV)

NorthStar

High Energy Proton Spallation of Th232

"Enabling the flaure of nuclear weddate"

Slides Courtesy of Jim Harvey, NorthStar



Operated by Los Alamos National Security, LLC for NNSA

NorthS*ar

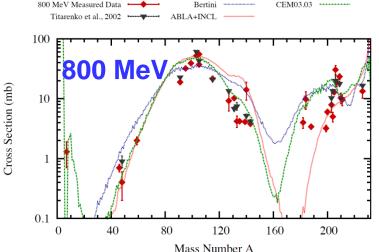
High Energy Proton Spallation of Th232 FNAL beam dump irradiation position

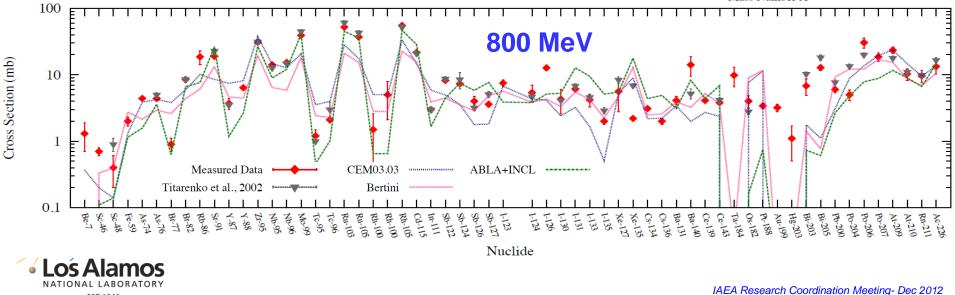
NorthS*ar

"Enabling the flature of maclear medicine"

IAEA Research Coordination Meeting- Dec 2012

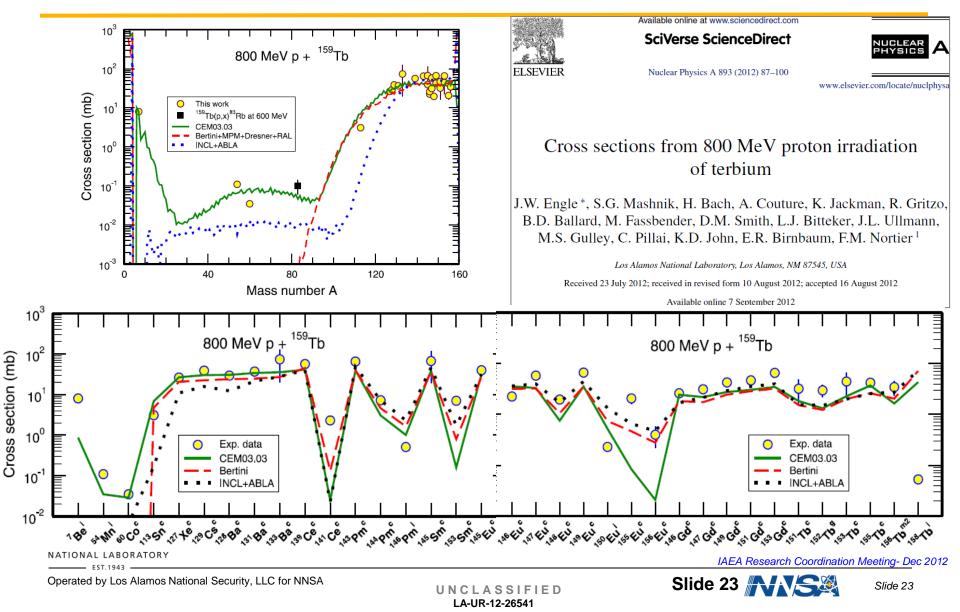
High Energy Proton Spallation of Th232


Copper Th232 target holder


Slide 21

Continuing analysis of ²³²Th +p (800 MeV and <200 MeV)

- Extraction of fission product cross sections for code verification, validation and development
- Analysis work performed by Dr. Jonathan Engle



Slide 22

Operated by Los Alamos National Security, LLC for NNSA

Recent ¹⁵⁹Tb+p measurements at 800 MeV Analysis of <200 MeV measurements in progress - Engle

Summary

- LANL has re-established a cross section measurement capability for charged particle induced nuclear reactions
- First LANL measurements were aimed at evaluating production potential of ²²⁵Ac and ²²³Ra in natural Th targets using 100, 200, 800 MeV beams – for IPF, BLIP and spallation production routes
- Results include new cross section data which were published in two separate papers
- Measurement of ²²⁷Ac in the energy range <200 MeV is still in progress</p>
- Complimentary measurements at ORNL (<30 MeV) and FermiLab (8 GeV)
- Extraction of many more cross sections continues in support of theoretical model verification and validation

Operated by Los Alamos National Security, LLC for NNSA

IAEA Research Coordination Meeting- Dec 2012

Additional slides

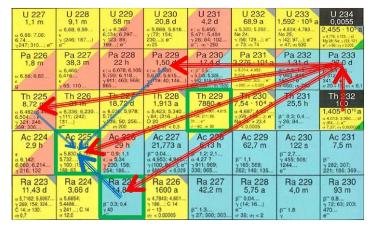
Various ²²⁵Ac/²²⁹Th Production Routes

Facility	Nuclear Reaction
Reactor (thermal neutrons)	226Ra (3n,γ) ²²⁹ Ra → ²²⁹ Ac→ ²²⁹ Th
Reactor (fast neutrons)	226Ra (n,2n) ²²⁵ Ra→ ²²⁵ Ac
Accelerator (low energy particles)	226 Ra (p,2n) ²²⁵ Ac 226 Ra (α,n) ²²⁹ Th 232 Th (p,x) ²²⁹ Th 230 Th (p,x) ²²⁹ Th
Accelerator (high energy protons)	$232 Th_{(p,x)^{225}Ac}$ $232 Th_{(p,x)^{225}Ra \rightarrow ^{225}Ac}$ $232 Th_{(p,x)^{229}Th}$
Accelerator (electrons)	226Ra (γ,n) ²²⁵ Ra→ ²²⁵ Ac

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED LA-UR-12-26541 IAEA Research Coordination Meeting- Dec 2012

Evaluate Higher Energy Accelerator Production Routes using thorium targets

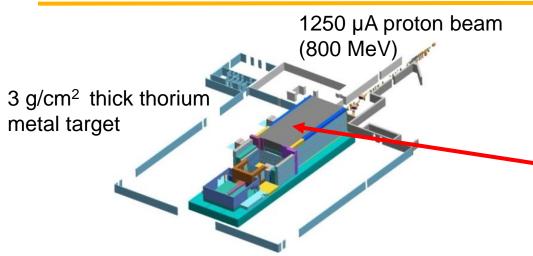

Th-229 production

²³²Th(p,4n)²²⁹Pa^{99.5%}→²²⁹Th ²³²Th(p,p3n)²²⁹Th

Ra-225/Ac-225 production

²³²Th(p,x) ²²⁵Ac ²³²Th(p,x)²²⁵Ra^{100%}→²²⁵Ac ²³²Th(p,x)²²⁹Th^{10%}→²²⁵Ac ²³²Th(p,4n)²²⁹Pa^{0.5%}→²²⁵Ac

U 227 1,1 m <u>a</u> 6,86; 7.06; <u>6,74</u> <u>y</u> 247; 310; e	U 228 9,1 m α 6,68; 6,59 ^ϵ γ (246; 187) e ⁻	U 229 58 m 6.34(6.297 7 123: 88: 199; e ⁻	U 230 20,8 d α 5,888; 5,818 γ (72; 154; 230); e ⁻ σ ₁ 25	U 231 4,2 d ε: α 5,456; 5,471; 5,404 γ 26; 84; 102 ε ⁻ ; σ ₁ -250	U 232 68,9 a α 5,320; 5,262 Ne 24; γ (58; 129); e σ 73; σ; 74	U 233 1,592 · 10 ⁵ a α 4.824; 4,783 № 25; γ (42; 97); θ σ 47; σ; 530	U 234 0,0055 2,455 • 10° a 4775 4723 - st Mg 28: Ne ; (53: 121 • • 98: q; < 0.005
Pa 226 1,8 m	Pa 227 38,3 m 4,466; 6,416 7 65; 110	Pa 228 22 h ¢; a 6.078; 6,105; 5.799; 6,118 y911; 463; 969; 965	Pa 229 1,50 d 6; n 5,55 5,670; 5,64 7(119; 40; 13 e ⁻	Pa 230 17.4 d •: p 0.5. a 5.345: 5.326 y 952: 919: 455: 899: 444; m 1500	Pa 231 3.276 - 104 a 0.5.014; 4.952; 5.028No 24; F 237 727; 300; 303; e 0.200; m < 0.020	Pa 232 1.31 d β ⁻ 0.3, 1.3; ε γ 969: 894: 150	Pa 233 27.0 d 1312 341 920+1 07<0,1
Th 225 8,72 m α 6.482: 6.445: 6,504; γ 321: 246: 359: 306	Th 226 31 m α 6,336; 6,230 γ111; (242; 131) e ⁻	Th 227 18,72 d α 6.038; 5.978; 5.757 γ 236; 50; 256 σ σ 200	Th 228 1,913 a α 5,423; 5,340 γ84; (216); e Ο 20 σ 123; σι < 0,3	229 30 4.845 401 9.194.211:06 31e 0-60; or 30	Th 30 1,54 · 10 ⁴ a α 4,687; 4,621	Th 231 25,5 h β ⁻ 0,3; 0,4 γ 26; 84 e ⁻	Th 232 100 1,405 ⁰ 10 ¹⁰ a 9 (64); 8 7 (64); 8 7 (0000000
Ac 224 2,9 h 6,6142: 6,060; 6,214 y 216; 132	Ac 225 10,0 d a 5,830; 5,793; 5,732; C 14 y 100; (150; 188; 63); F	Ac 226 29 h β ⁻ 0.9; 1,1 ϵ; a 5,34 γ 230; 158; 254; 186	Ac 227 21,773 a β ⁻ 0.04 α 4.953; 4.941 γ (100; 84); e ⁻ α 880; σ ₁ < 0.029	Ac 228 6,13 h β ⁻ 1,2; 2,1 α 4,27 ? γ911; 969; 338; 965	Ac 229 62,7 m ^{β⁻} 1.1 7 165: 569: 262: 146: 135	$\begin{array}{c} Ac \ 230 \\ 122 \ s \\ \beta^- 2.7 \\ \gamma \ 455; \ 508; \\ 1244 \\ e^- \end{array}$	Ac 231 7,5 m ^{β-} ^{γ 282; 307;} 221; 186; 369
Ra 223 11,43 d a 5,7162; 5,5067 y 269; 154; 324 C 14; o 130; or 0,7	Ra 224 3,66 d ^{a 5,6854;} ^{5,4486} ^{y 241; C 14} ^o 12,0	Ra 225 14,8 d ^{β[−]0,3; 0,4} ^{γ40}	Ra 226 1600 a a 4,7843; 4,601 7 186; C 14 a ~ 13 et < 0.00005	Ra 227 42,2 m ^{β⁻1.3} γ 27; 300; 303	Ra 228 5,75 a β ^{- 0.04} γ (14; 16) e ⁻ σ 36; σ ₁ < 2	Ra 229 4,0 m β ⁻ 1.8 γ	Ra 230 93 m β ⁻ 0.8 γ 72; 63; 203; 470 e ⁻



Operated by Los Alamos National Security, LLC for NNSA

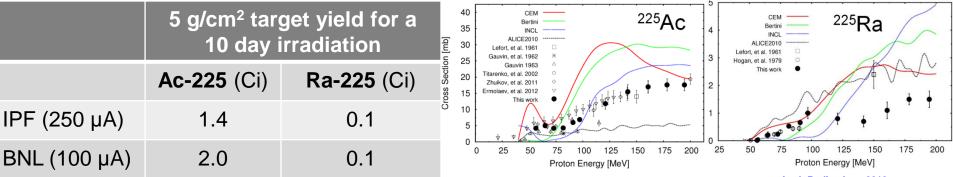
IAEA Research Coordination Meeting- Dec 2012

800 MeV production potential at the future MTS

Measured production cross sections translate into a production potential of :

- 1.6 Ci of directly-produced ²²⁵Ac per day (0.17% ²²⁷Ac impurity level)
- 250 mCi of ²²⁵Ra per day, which translates into 140 mCi of pure ²²⁵Ac

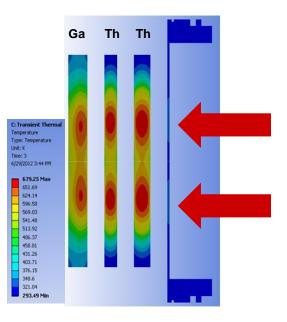
Operated by Los Alamos National Security, LLC for NNSA



Isotope	T _{1/2}	Expected Yields
²²⁵ Ra	14.8 d	250 mCi/day (~140 mCi of pure ²²⁵ Ac)
²²⁵ Ac	10 d	1.6 Ci per day (0.17% ²²⁷ Ac)
²²³ Ra	11.4 d	550 mCi per day
²²⁷ Th	18.7 d	780 mCi per day
²²⁷ Ac	21.7 у	1.0 Ci per year

IAEA Research Coordination Meeting- Dec 2012

Targetry Advances – Ac-225 production - Cross section measurements



- Data show that large scale production is feasible at IPF and BLIP
- Predicted co-production of ²²⁷Ac is non-zero but low (<0.2%)
- Small scale proto production foil irradiations proceed at BNL to support ORNL chemical recovery development
- High current targetry is being developed by LANL for full-scale production at both facilities

Operated by Los Alamos National Security, LLC for NNSA

Weidner et al. Appl. Radiat. Isot. 2012

Production Potential

a Instantaneous production rate, which does not account for decay

b Values calculated from 227Ac cross section measurements by Ermolaev, et al. and ALICE2010 predictions

	IPF (250 µA, 93-72 MeV)		BLIP (100 µA 195-183 MeV)	
	Production Rate ^a [μCi/μA·h]	Yield [Ci]	Production Rate ^a [μCi/μA·h]	Yield [Ci]
²²⁵ Ac	33.1	1.4	115.6	2.0
²²³ Ra	6.8	0.3	18.8	0.3
²²⁵ Ra	2.6	0.1	6.7	0.1
²²⁷ Th	173.1	8.7	95.7	1.9
$^{227}\mathrm{Ac}^{\mathrm{b}}$	0.04	0.003	0.09	0.002

Production rates and projected yields from a 10-day irradiation of a 5 g/cm2 natural thorium target at the Los Alamos National Laboratory Isotope Production Facility and Brookhaven National Laboratory. The energy range of the protons within the 5 g/cm2 thick thorium target is shown.

Operated by Los Alamos National Security, LLC for NNSA

