

Development of Medical Radionuclides and Nuclear Data Measurement at the FZJ

Ingo Spahn

Institut für Neurowissenschaften und Medizin (INM-5): Nuklearchemie Forschungszentrum Jülich, D-52425 Jülich, Germany

1st Research Coordination Meeting on *"Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production"*, Vienna, Austria, 3 – 7 December 2012

Forschungszentrum Jülich GmbH

Mission

"We work towards comprehensive solutions for the grand challenges facing society in the future in the three fields of ..."

- ➡ Health,
- Energy and Environment
- Information Technology

5000 Employees (1700 scientists)

The Institute of Neurosciences and Medicine (INM-5): Nuclear Chemistry

Mission (in catch words)

- x Radionuclide development
- Development of radiopharmaceuticals
- Radiopharmaceutical Services
- Education

Radionuclide Development at the INM-5

- Long tradition in radionuclide research.
- Very good reputation for development of radioisotopes for medical diagnosis and therapy as well as for measurement of nuclear data for radionuclide production.
 - Pioneer work in the field of routine production of important PET- and SPECT-nuclides like F-18, I-123 and I-124.
- Since 1978 regular partner of the IAEA in CRPs and other projects. Prof. Qaim has been the initiator and leading person in all CRP's

Development of Radionuclides

The "Radionuclide Group" working on

- Targets and target stations
- Nuclear data measurements
- Sample preparation
- Radiochemical separation procedures

Research Personnel Involved in the Project

Ingo Spahn - Develo		Development of medical radionuclides &
Bernhard Scholten	-	Investigation of charged particle monitor reactions
Sebastian Kuhn	-	Investigation on the production of positron emitting radionuclides of scandium and titanium
Katharina Breunig	-	Studies on the production of radioisotopes of bromine and development of radiobrominated adenosine receptor ligands

Academic advisors

Prof. Dr. H.H. Coenen

Prof. Dr. Dr. h.c. mult. S. M. Qaim

Accelerators for Radionuclide Development

Compact Cyclotron CV 28

Decommissioned and transferred to the KIPT in Ukraine

Baby Cyclotron BC 1710 17 MeV H⁺ (8 – 10 MeV ²H⁺)

JULIC Injector for COSY 45 MeV ¹H⁻ 76 MeV ²H⁻

Radionuclide Development at the BC 1710

- Single beam-line with multi target station
- Irradiation of solid, liquid and gas targets
- Custom-built target holders and collimator for data measurements

New solid target station for data measurements of non-standard PET nuclides and therapeutic radioisotopes was designed and constructed

Irradiation at Injector of COSY (JULIC)

External target station

- Adapter with water cooled 4 sector collimators
- Existing target systems for CV28 adapted to external beam line (stacked-foil target, gas-target, slanting target, etc.).

Internal target system

- Water cooled stack holder
- Target-to-beam setup (no beam switching)
- Irradiation of thermally stable materials

Nuclear Chemistry Facilities

"hot chemistry" laboratories

- Two hot zones of about 1500 m²
- Radiochemical laboratories for handling of numerous radionuclides up to 10⁷-fold of permitted limit
- "Hot" mechanical and electrical workshops
- Equipment for performing inorganic and organic wet chemistry as well as gas phase chemistry

Routinely applied radiochemical operations include

- Dry distillation
- Ion-chromatography
- Solvent extraction
- Electroplating

Analytical Equipment at the INM-5

Chemical analysis

- UV/VIS spectrometry
- Mass spectrometry
- Ion-chromatography
- NMR
- Microscopy and gravimetry

Radioactivity measurement

- Multiple HPGe-detectors
- Low-level γ-ray counting
- Low-level γγ-coincidence
- X-ray counting
- "Instant Imager"

Scientific Infrastructure at the FZJ

- Central Division for Chemical Analysis (ZCH)
- Central workshops
- Divisions for radiation safety and waste management
- Partner institutes with related research focus (lanthanide/actinide chemistry, material science)

Proposed Project: Investigation of the PET-Isotopes ⁶⁶Ga and ⁶⁸Ga

Interesting positron emitters for medical diagnosis

	Half-life	Positron energy
⁶⁶ Ga	9.49 h	4.153 MeV
⁶⁸ Ga	67.63 min	1.899 MeV

- Cross section measurements using different projectiles and target materials
- Pure radiochemical separation of produced radiogallium (Shehata et al. J. Radioanal. Nucl. Chem. (2011) 288:887–893.)
- Preparation of thin samples for X-ray measurement
- High-precision activity measurement preferably in co-operation with partner

Investigation of the new PET-Isotopes ⁴⁵Ti and ⁴⁴Sc

New positron emitters for medical diagnosis

	Half-life	Positron energy
^{44m} Sc	58.6 h	
^{44g} Sc	3.93 h	1.474 MeV
⁴⁵ Ti	184.8 min	1.040 MeV

- Cross section measurements and determination of integral yields
- Pure radiochemical separation of produced radiogallium
- Preparation of thin samples for X-ray measurement
- High-precision activity measurement preferably in co-operation with partner

The "Novel" Positron Emitter ⁷⁶Br

Longer-lived positron emitter with high chemical potential

	Half-life	Positron energy
⁷⁶ Br	16.2 h	3.382 MeV

- Cross section measurements and determination of integral yields (Spahn et al., Radiochim. Acta 97, 535–541 (2009).)
- Pure radiochemical separation of the product (Shehata et al., Radiochim. Acta 100, 1–8 (2012).)
- Preparation of thin samples for X-ray measurement
- High-precision activity measurement preferably in co-operation with partner

Investigation of the PET-radionuclide ⁸⁶Y

Interesting alternative to the SPECT-nuclide ⁹⁰Y

	Half-life	Positron energy
⁸⁶ Y	14.7 h	1.221 MeV

- Cross section measurements and determination of integral yields; irradiation of enriched target material (Kettern et al., Radiochim. Acta (2002), 90(12), 845-849.)
- Pure radiochemical separation of the product (Kandil et al., J. Radioanal. Nucl. Chem. 279 (2009) 823–832.)
- Preparation of thin samples for measurement

The new IBA Cyclone 30XP

Beam current up to 350 μ A (50 μ A for α -beam)

Protons: 15 – 30 MeV

Deuterons: 7 – 15 MeV

 α -particles: 30 MeV

⇒ Replacement of the cyclotrons CV 28 und BC 1710
⇒ Improvement of existing irradiation capacities

Sketch of Cyclotron Vault and Target Stations

Summary of Research Potential

- Preparation of targets for irradiation
- Irradiations with low energy protons (BC 1710) and intermediate energy deuterons and protons (JULIC)
- Radiochemical isolation und purification of radionuclides for in-house or external measurements
- Positron emission probabilities and nuclear cross section determination
- ⇒ Determination of integral yields and TTY
- Nuclear data evaluation in co-operation with international partners