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We describe the basic mechanisms responsible for nuclear bulk properties and shell formation
incorporated in the Duflo Zuker models. The emphasis is put on explaining why functionals of the
occupancies can be so efficient in accounting for data with minimal computational effort.

NOTE: this is a corrected version of an article
that appeard in Rev. Mex. Fis. S 54(2008)129.

It is commonly asserted that whenever shell model
(SM) calculations become untractable—i.e., mostly ev-
erywhere in the periodic table—they should be replaced
by mean field (MF), or better, density functional theory
(DFT) treatments. The implicit (and unstated) assump-
tion is that MF or DFT must in some sense be equivalent
to SM—i.e., to solving the Schrödinger equation—but
much simpler. The Duflo Zuker mass model [1] occupies
a special position:

• It is not a MF.

• It is not a DFT but a functional of orbital occu-
pancies.

• It follows explicitly the steps involved in solving the
Schrödinger equation.

• It is computationally trivial when compared with
other mass models, and gives much better agree-
ment with measured values.

• It is almost universally claimed that the model is in-
comprehensible, which has retarded its acceptance.

Let me try to make it comprehensible by steps. First
we look at Fig.1 which shows experimental binding en-
ergies [4] subtracted from the Bethe Weizsäcker liquid
drop (LD) form in Eq.(1). As the information coming
from any of the four mass sheets (even-even, even-odd,
odd-even and odd) is basically the same, from now on,
we examine only even-even nuclei and ignore the pair-
ing term (which explains the practically definite positive
shell effects).

E(LD) = 15.5A− 17.8A2/3 − 28.6
4T (T + 1)

A

+40.2
4T (T + 1)

A4/3
− .7Z(Z − 1)

A1/3
. (1)

It only remains to read Fig. 1 to have a good mass for-
mula as a sum of a macroscopic baseline plus shell effects
represented by quadratic, cubic and quartic terms in the
number of active protons and neutrons in spaces defined
by magic numbers, basically 28, 50, 82 and 126. This
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was achieved with great success by Jean Duflo [2] under
a slightly different guise from the one described here. In
a companion paper [3] it was shown that it should be
possible to derive microscopically something quite close
to Duflo’s formula.

There were serious problems though: no clearcut defi-
nition of the baseline, need to postulate the magic num-
bers as well as the transition points between spherical
and deformed regions. (The latter show as flat patterns
at the bottom of the parabolas in Fig. 1). All these prob-
lems were solved in [1], and it is convenient to make a list
of what are the injunctions defining this work

• Make sure that that the formulation has correct LD
asymptotics .

• Separate deformed from spherical.

• Separate Hartree Fock (HF) from correlations.

• Be very careful about scaling; i.e. recognize what
goes as A, A2/3,A1/3, A0,A−1/3. In particular

• Be uncompromising about LD principles:

1. Pairing scales as A−1/3, NOT A−1/2 [5]

2. Coulomb is in Z(Z − 1). NOT Z2 [6]

3. Symmetry is in T (T + 1), NOT (N − Z)2 [7]
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FIG. 1: (Color online) Shell effects (BE(exp)-E(LD)) along
isotope and isotone lines (latter displaced by -14 MeV). Only
even-even shown. PLEASE READ TEXT CAREFULLY.
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FIG. 2: Ground state energies per particle (except for 6Li)
obtained from Eq. (5) (Coulomb included schematically) by
filling lowest oscillator orbits.

4. Shell effects scale as A1/3.

Now we proceed as we would in solving the Schrödinger
equation, and define a good unperturbed, monopole,
Hamiltonian. We refer to [7] for details and arguments
on the matter. Here, it is sufficient to know that we
start with a set of matrix elements in an isospin coupling
scheme

W JT
rstu = V JT

rstu − δrtδsuV T
rs. (2)

from which we have extracted centroids

V T
rs =

∑
J V JT

rsrs[J ](1 − (−1)J+T δrs)
(2jr + 1)(2js + 1 + δrs(−1)T )

(3)

In the neutron-proton (np) scheme each orbit r goes
into two rn and rp and the centroids can be obtained
through (x, y = n or p, x �= y)

Vrxsy =
1
2

[
V1

rs

(
1 − δrs

2jr + 1

)
+ V 0

rs

(
1 +

δrs

2jr + 1

)]
(4)

Vrxsx = V 1
rs.

The monopole Hamiltonian is then a quadratic form in
number operators mrx

Hd
m = Kd +

1
2

∑
rx,sy

Vrxsy mrx(msy − δrxsyδxy) (5)

where we have added the kinetic energy. Fig. 2 shows
some binding energies obtained from Eq. (5) using a
Vlow k potential [8]. At low density (i.e., low �ω) the
interaction behaves as a contact δ force and the ener-
gies go as (�ω)3/2. At high density the interaction be-
haves as a constant, the kinetic energy dominates, and

the system saturates, but at totally wrong places: the
right saturation minima should come around the stan-
dard value �ω ≈ 40A−1/3 ≈ 6 − 15 MeV. In this range
the energy is linear in �ω. When nocore SM calculations
are performed [9] the gain in energy is substantial but
the patterns in the figure are preserved. Therefore bet-
ter calculations do not lead to saturation which has to
be enforced artificially through use of the correct �ω, as
done in SM work. In the future it would be better to do
it through three-body forces as explained in [7] (around
pag. 436).

The master terms

Now we invoke the general factorization property [5]

∑
x,y

VxyZx · Zy =
∑

µ

Eµ(
∑

k

Zkfkµ)2 (6)

and apply it to Eq. (5), or its equivalent in isospin
formalism, so Z are operators Z ≡ m, T . By diagonal-
izing realistic monopole centroids over many oscillator
shells one finds that the strong isoscalar and isovector
collective—master—terms that overwhelm all others are
of the form (mp = np + zp, tp = |np − zp|, np, zp for
neutrons and protons respectively)

Vd0 = E0

(∑
p

mp√
Dp

)2

, Vd1 = E1

(∑
p

tp√
Dp

)2

(7)

where Dp = (p + 1)(p + 2) is the degeneracy of the ma-
jor harmonic oscillator (HO) shell of principal quantum
number p. Setting ET = �ωVT , using Boole’s notation
p(3) = p(p−1)(p−2), and summing up to the Fermi shell
pf we obtain asymptotic estimates

∑
p

mp =
pf∑

p=0

2Dp = A =
2(pf + 3)(3)

3
. (8)

Kd =
�ω

2

∑
p

mp(p + 3/2) =⇒ �ω

4
(pf + 3)(3)(pf + 2)

(9)

〈r2〉 =
�

AMω

∑
p

mp(p + 3/2) =⇒ 3�

4Mω
(pf + 2), (10)

SO �ω = 35.59
A1/3

〈r2〉 =⇒ �ω ≈ 40
A1/3

MeV. (11)

Vd0
�ωV0

(∑
p

mp√
Dp

)2

=⇒ �ωV0[pf (pf + 4)]2 (12)

Showing that Vd0 and Kd go as A, as they should. A
more careful recent fit to the master terms reveals that
in Eq.(7) the denominators are better approximated by
1/
√

Dp −→ 1/
√

Dp − α/Dp, leading asymptotically to
surface terms. It is impossible to overestimate what is
achieved by the master terms: they simply account for
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FIG. 3: HO and EI closures

HO EI
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Djp = 2(p + 1) Drp = p(p + 1)

Dν,π = Dp + 2 = Dv nν,π = nv = nj(p+1) + nrp

the four LD main terms in Eq.(1), and they produce
strong magicity effects at the HO closures.

The S operators and the monopole contribution

The problem we must face next is to erase most of the
HO closures and turn them into extruder-intruder (EI)
ones as explained schematically in Fig. 3. The Dp levels
in HO shell p are split in two groups: the largest subshell
j(p) with j = p + 1/2, Dj(p) = 2(p + 1), and the rest
r(p) with Dr(p) = p(p + 1). The largest shell j(p) is
extruded from major shell p and intrudes in major shell
p−1. Clearly mp = mr(p)+mj(p), and we must suplement
the master term with others containing an operator that
separates r(p) and j(p). The correct choice is

Sp = (pmj(p) − 2mr(p)) =
Drpmj(p) − Dj(p)mr(p)

(p + 1)
, (13)

because it vanishes at HO closures and therefore gives
no asymptotic LD contribution. Similarly we may define
the isovector Stp operator by replacing mp by tp.

The DZ strategy is to examine all possible symmetric
quadratics in mp, Sp, tp, Stp and keep the relevant ones.

Spherical correlations

To this we must add the effect of spherical correla-
tions. In [3] it is shown how to invoke perturbation the-
ory or coupled cluster theory and average to obtain the
corresponding estimates, as in the following example, in-
volving a quadrupole-quadrupole np interaction in the EI
spaces (any other multipole would do; number operatos
defined at bottom of Fig. 3)

〈Heff
m 〉 = χC〈nz|qπ · qνqπ · qν |nz〉 =

χC〈z|qπ · qπ|z〉〈n|qν · qν |n〉 (14)

Upon averaging this four-body operator must go as
nπ(Dπ − nπ)nν(Dν − nν), as dictated by vanishing at
empty and closed shells. Note the extreme generality of
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FIG. 4: Schematic single particle spectrum above 132Sn. rp

is the set of orbits in shell p excluding the largest. For the
upper shells the label l is used for j = l + 1/2

N Nd Sm Gd Dy

92 4.47 4.51 4.55 4.58

2.6(7) 4.36(5) 4.64(5) 4.66(5)

94 4.68 4.72 4.76 4.80

5.02(5) 5.06(4)

96 4.90 4.95 4.99 5.03

5.25(6) 5.28(15)

98 5.13 5.18 5.22 5.26

5.60(5)

TABLE I: B(E2) ↑ in e2b2 compared with experiment.

this argument, that only relies on the possibility of per-
forming averages.

Deformation

In DZ for each nucleus two calculations are performed
and the lowest kept. We have just described the ingredi-
ents of the spherical case. Deformation is associated with
the promotion of four neutrons and four protons to the
next major shell. The loss of monopole energy is upset by
the gain in quadrupole coherence of the form in Eq.(14).
This mechanism, vindicated by the very good descrip-
tion of masses in deformed regions has been later con-
firmed by the accurate estimate of quadrupole moments.
The story is told in [7] (around page 464) from which
we borrow Fig.4 showing the orbits being filled above
132Sn. Starting at around Nd (Z = 60), as the first neu-
tron shell above N = 82 (f7/2) fills, spherical solutions
dominate up to N = 90 where rotational motion sets
in. Using SU3-like arguments the intrinsic quadrupole
moments and B(E2) rates can be estimated as

Q0 = 56eπ +(76+4n)eν, B(E2) ↑= 10−5A2/3Q2
0 (15)

for N = 90 + 2n and effective charges eπ = 1.4, eν = 0.6.
Results are given in Table I. (The 152Nd value has now
been remeasured...).

The DZ strategy. Three body and surface terms
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FIG. 5: Two neutron separation energies for Z = 88-100
for frdm(rmsd=621 keV) and dz(31p, rmsd=338 keV), and
etfsi(rmsd=703 keV) and dz(10p, rmsd=524 keV). frdm dis-
placed up by 8 MeV.

By now we have obeyed all the injunctions mentioned
earlier and we can define the strategy to construct a gen-
eral monopole functional. It amounts to enumerate all
conceptually acceptable terms and then select through
numerical fits the indispensable ones,

1. Strict monopole terms: quadratics in number op-
erators.

2. Correlation terms: quadratics, cubics and quar-
tics. Note that quadratics have the same form for
monopole and correlation.

3. Surface terms associated to each of the above, i.e., ,
each operator Γ becomes Γ(1−aA−1/3), with a ≈ 5
for most operators, which means they change sign
at A ≈ 100.

4. The fits demand an anomalous cubic term

nπ(Dπ − nπ)(Dπ − 2nπ) + nν(Dν − nν)(Dν − 2nν)
that scales as A, i.e., , it violates the injunction
that shell effects should scale as A1/3

The number of possible contributions consistent with
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FIG. 6: Two neutron separation energies and binding energies
related to LD in Eq.(1) for frdm and dz(31p, displaced down
by 30 and 15 MeV respectively).

this enumeration is very large and we have settled for two
standard versions:

dz31p A 31 parameter variant of the published 28 pa-
rameter fit [1] both to the 1993 data [10]. For the
2003 data [11] dz31p yields rmsd=338 keV (2035
nuclei). Fortran code available on request (some
400 lines).

dz10p The 10 parameter version, rmsd=524 keV to the
2003 data. Fortran code available at [4].

Figs. 5 compares dz31p and dz10p with the finite
range droplet model (frdm [12], about 30 parameters,
rmsd=621 keV) and extended Thomas Fermi mean field
calculations (etfsi, about 10 parameters [13], and refer-
ences therein; rmsd=703 keV). The Z = 88 − 100, N =
110−190 range has the advantage of including some mea-
sured values and reaching the putative N = 184 EI clo-
sure.

Three remarks

• The indications of N = 184 magicity are almost
absent for dz31p, very marginal for frdm and fairly
clear for dz10p and etfsi.
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• The dz patterns are smooth: beyond N = 126
magicity, one detects only some anecdotic effects
in the N = 160 − 170 range.

• The frdm and etfsi patterns are agitated: many
things happen in places were nothing happens in
dz.

Fig. 6 collects predictions for some 8000 nuclei.
Globally the two neutron separation energies for frdm

and dz31p are quite similar but again systematically
more abrupt in frdm. Worth noting: drip lines are very
much the same for both models.

The LD subtracted binding energies are probably the
most revealing: The qualitative similarity is striking, es-
pecially for the heavier regions about which nothing is
known.

The strong dz unbinding for states beyond the drip-
lines is suspicious. Difficult to decide whether the hint is
interesting or misleading.
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FIG. 7: Evolution of (cs ± 1 ) spectra from 40Ca to 48Ca

As mentioned, the dz “philosophy” was declared at
first to be incomprehensible. It is only when the 2003
mass data were published that the predictive power of
the approach began to be recognized [15] and dz was
accepted as one of the three standards alongside frdm and
etfsi (later hfb [13]). There is no point in deciding which
is better but it is clear that frdm and etfsi produce too
many shell effects that are not there, while dz may be too
smooth and miss shell effects that are there. However, I
would like to postulate the following

The only fundamental shell effects are related
to the appearance and disappearance of EI

closures. All other magicity effects are mis-
cellaneous [3]

Blunt as this statement may sound it only amounts to
a reading of Fig. 1.

The monopole Hamiltonian and the EI prob-
lem [14]

Realistic interactions provide a crucial hint: the mas-
ter terms. They give no hint about the HO to EI tran-
sition: they do not produce EI magicity [8]. Hence, it
has to be “invented”; dz31p (dz10p) produce the tran-
sition in a complicated (simpler) way. No way to know
which is the right one (if any). If now we remember that
one of the dz injunctions is to separate monopole (HF)
from correlation (SM) we note that dz cannot possibly
do it, because the biggest effects are quadratic and—as
noted—there is no way to know their origin when fitting
masses. So here we try a more fundamental approach:
define autonomously the monopole Hamiltonian. This
was attempted quite successfully in [14], which we shall
refer to as dz2. The idea is to separate cleanly LD from
shell effects, and then characterize the latter by the parti-
cle and hole spectra on closed shells, a set we call cs±1 .
The separation is achieved by the—master minus four
times kinetic— combination in Eq. (16) which produces
the basic HO magicity, but vanishes to order A and A2/3.
The mechanism to produce cs ± 1 spectra is illustrated
in Fig, 7

1. On HO closures (40Ca in this case) an l · s + l · l
one body term produces the right spectrum. The
assumption is borne out by realistic forces [8]

2. The evolution to EI closures is driven by the f7/2

orbit through four types of two body “drift” terms
in Eq. (17): intra-shell neutron proton (zni), cross-
shell neutron proton (znc), intra-shell nn or pp (ffi),
cross-shell nn or pp (ffc). For example, in going
from 41Ca to 49Ca the original (basically l ·s) spec-
trum must be modified so as to leave unchanged
the upper levels (r3) and depress the 3> i.e., f7/2

orbit. In other words the ffi term must contain an
operator of the form m3>r3 (see Eq.(13)).

W − 4K =

(∑
p

mp√
Dp

)2

− 2
∑

p

mp(p + 3/2) (16)

Hs
m = W − 4K + l · s + l · l + 2b drift terms (17)

A six parameter fit to some 90 cs ± 1 levels
yields rmsd=200 keV. The neutron and proton
gaps (2BE(N, Z) − BE(N + 1, Z) − BE(N − 1, Z),
2BE(N, Z)−BE(N, Z +1)−BE(N, Z−1)), though not
included in the fit, are also accurately reproduced [14].
Fig. 8 illustrates how the evolution takes place in N = Z
nuclei: a) W −4K produces huge HO effects; b) l ·s+ l · l
very much erase the HO magicity; c) It is the drift terms
that eventually drive the EI closures. Eq. 17 collects all



6

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 0  10  20  30  40  50  60

E
(t

=
0,

 M
ev

)

A

W-4K
W-4K+ll+ls

Hm

FIG. 8: The different contributions of Eq.(16) for N = Z

 2

 4

 6

 8

 10

 12

 14

 50  55  60  65  70  75  80  85  90

E
(S

n 
is

ot
op

es
, M

eV
)

N

Monopole
Exp-LD

FIG. 9: LD-referred energies of Sn isotopes compared to
monopole predictions. Both even and odd N shown for the
latter.

the terms. It is worth noting that the drift terms that
play such a crucial role in generating EI magicity are
small: EI closures may be spectacular but they are frag-
ile. Though by construction the monopole Hamiltonian
in Eq. (17) is free of terms that go as A and A2/3, to
compare with data we have to correct for A1/3 effects
(apparent in Fig. 8 for example). Similarly we expect
the need of corrections to the symmetry i.e., , T (T + 1)
terms. Once the A1/3 and T (T +1) corrections are made,
good agreement is obtained in Fig. 9 for the Sn isotopes
by reducing the shell effects by a VERY substantial 2.5
factor. This is truly significant, as it stresses the need
to separate strict mean field (MF, Hm in Eq. (17)) from
correlation effects subsumed in the 2.5 factor. Even if
MF may mock such behaviour globally, it cannot help
letting some shell effects smuggle through, as is the case
of the N = 64 closure in Fig. 9, and as made evident
in Figs. 5 and 6. The prevalent idea that the pairing
force is what is needed to go beyond MF. This is not
so: a SM calculation cannot be mocked simply as MF
plus pairing. Fig. 9 illustrates the reason why dz con-
veniently “misses” non existent subshell closures (as for
N = 64): simply because no subshell structure is con-
sidered. As a consequence some interesting but episodic
shell effects are missed (e.g. 96Zr) but the plethora of
spurious ones—characteristic of MF studies—is avoided.

Conclusions

The basic strategy of dz is probably sound. However,
the quality of the fits owes (too) much to three body
terms that have unacceptable scalings and incomprehen-
sible surface behaviour. The most probable reason is that
the strategy relies on strict two body forces while nowa-
days it is clear that the origin of the HO to EI transition
of the master terms must be of a three body nature [16].
The cuestion deserves further study.
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