Nuclear Data Needs in China

Ge Zhigang

China Committee of Nuclear Data, China Nuclear Data Center, China Institute of Atomic Energy P.O.Box 275-41, Beijing 102413, P.R.China, Fax:+86-10-69358119 E-mail: gezg@ciae.ac.cn

1.

- a)
- Evaluated completed neutron reaction data file Actinide: 233,234,235,236,238 U, 237,238,239 Np, 237,239,240,241,242 Pu, 241,242,242m,243 Am, 242,243,244,245,246,247,248,250 Cm, 249,250 Bk, 249,250 Cf, 249,250 Ch, 249,250 Ch, 28,29,30 Si, 0,40 Ca, 50,51,52,53,54 Cr, 46,47,48,49,50 Ti, 54,55,56,57,58 Fe, 59,60 Co, 63,64,65 Cu, 90,91,92,93,94,95,96 Zr, 93,94,95,96 Nb, 204,206,207,208 Pb, 0,180,181,182,183,184,185,186 W Fission product: 154,155,156,157 Gd, 101,102,104,106 Ru, 103 Rh, 121,123 Sb, 133,134,135 Cs, 142,143,144,147 Nd, 148,149,150,151,152 Sm, 151,153 Eu b)
- c)
- Light nuclides: n, ^{1,2,3}H, ^{6,7}Li, ⁹Be, ^{0,12}C, ^{14,15}N, ^{16,17}O, ¹⁹F d)
- neutron energy up to 30MeV, File MF 1-6,12-15,31-40
- Photon reaction data: isotopes of Be, Fe, Cu, Zr, W, Pb, Bi and Th, U, Pu e)

2. **Activation cross sections:**

To meet the needs for burn-up analysis & calculation, decay heat calculation: key reactions: (n,γ) and(n,2n) for ^{147,148}Nd, ^{147,148,148m} Pm, ^{147,148,149,150, 151,152}Sm, ^{142,143,150}Nd, ¹⁵²Eu, ¹⁴¹Pr, ^{124,125}Sn, ^{124,125}Sb, ^{104,105,106}Ru, ^{133,134}Cs;

3. **Fission yields** :

Independent and cumulative fission yields of $n+^{235, 238}U$, ^{239}Pu , the yields of the products with masses of 125, 106, 134, 142, 144, 148, 149, 151, 154, are applied to the reactor research such as for the fuel consumption benchmark verification and , fundamental scientific research, such as elements evolution in nuclear astrophysics.

The prompt fission spectrum is applied in the reaction design, for calculation of the neutron transport.

Decay data:

The decay data for 105,106 Ru, 124,125 Sb, 125 Sn, 134 Cs, 141 Ce, 142,144 Pr, 144,147,149,151 Nd, 147,148,148m,149,151 Pm, 151,153 Sm, ^{152,154}Eu, will be evaluated.

GIF reactor and fusion: 5.

The GIF reactors, such as, Sodium-cooled Fast Reactor(SFR), Thorium Molten Salt Reactor(TMSR), Very High Temperature Reactor (VHTR) are being studied and some demonstration and experimental facilities of them under construction, and the research about fusion energy (ITER international collaboration) are performing in China. The requirements of nuclear data have been proposed as following:

For the TMSR project research purpose:

 (1) Photonuclear data: ^{6,7}Li, ⁹Be, ¹²C, ¹⁹F.
 (2) Fission product yields: ^{231,232,233}Pa, ²⁴²Am.
 (3) Decay data: ⁷Be, ¹⁰⁷Pd, ¹⁵³Gd, ²⁰⁸Tl, ^{225,226,227}Ac, ^{232,233,234,235}U, ^{230,231,232,233,234,234m}Pa, ^{227,228,229,230,231,232,234}Th, etc

4) Activation cross section: 155,157 Gd(n, γ), 155,157 Gd(n,2n), 232 Th(n, γ), 232 Th(n,2n), 233 Pa(n, γ), etc.

For the SFR project research purpose:

- 1) Covariances for material in common use
- 2) KERMA, DPA
- 3) Lumped fission product of ²³²Th, ^{233,235,238}U, ²³⁷Np, ^{238,239,241,242}Pu, ²⁴¹Am, ²⁴⁴Cm

- 5) Europed fission product of Tin, C, Np, Fu, Am, Cm
 4) Delayed gamma multiplicity and spectrum for gamma heat deposition calculation for ²³⁸U, ²⁴¹Pu
 5) Photonuclear data: ⁹Be, ¹²C
 6) Decay data: ^{22, 24}Na, ²⁶Al, ^{103,106}Ru, ¹⁰⁶Rh, ¹⁰³Pd, ^{108m, 110m}Ag, ^{109,113m}Cd, ^{111,113m}In, ¹¹³Sn, ^{123,124,125,129,131}I, ^{123m}Te, ^{124,125}Sb, ^{127,131m,133}Xe, ^{131,134,137}Cs, ^{133,140}Ba, ^{139,141,144}Ce, ¹⁴⁰La, ¹⁴⁴Pr, ¹⁴⁷Pm, ^{148,153}Gd, ^{152,154,155}Eu, ¹⁵³Sm, ^{233,234,235,236,238}U, ²³⁷Np, ^{238,239,240,241,242}Pu, ^{241,243}Am, ^{242,243,244}Cm etc.
 7) Activation cross section: ²⁴Na(n,2n), ^{155,157}Gd(n,2n), ^{182,183,184,186}W(n,2n), ^{206,207,208}Pb(n,2n), ^{235,238}U(n,f), ²³⁹P, (C, D, ²⁴¹La, ⁴⁴¹La, ⁴⁴¹
- 239 Pu(n,f), 241 Am(n, γ),(n,2n),etc.

For the fusion study purpose:

The nuclear data for light nuclei, structure material are also need for the fusion study. Although these data have been included in the FENDL and other evaluated data files, but the more accuracy and reliability are required, especially for deuterium and tritium et al.

For the isotope production/ medicine and other fields 6.

For the nuclear medicine and isotope production et al. the more accurate information of nuclei, such as: the half live, decay data, Q value, level scheme et al. are also needed to update. These information are also very useful for the popular education, fundamental research, and nuclear technology application.

For the isotope production purpose:

Isotopes production by accelerator: production of the ¹¹C, ¹³N et al. more than 30 isotopes, which need the excitation function, production yields etc of the charged particle(p, d, t, etc) induced reactions for the ¹⁴N, ¹⁶O, ²⁴Mg, ³⁰Si, ⁴⁰Ar, ^{50,52}Cr, ⁵⁵Mn, ⁵⁷Fe, ⁶⁰Ni, ⁶³Cu, ²⁰⁹Bi(p,n),(p,2n) and up to ²⁰³Tl.

Isotopes production by reactor: production of the ³H, ¹⁴C, ²⁴N et al. more than 150 isotopes, and the targets contain ⁶Li, ¹⁴N, ²⁴Na and the more than 150 reactions yields of the (n,γ) , (n,p), (n,α) are need which including the cross sections, decay data, half time etc.

For the medical isotopes purpose:

The current widely used isotopes: ${}^{32}P$, ${}^{89}Sr$, ${}^{90}Y$, ${}^{103}Pd$, ${}^{125,131}I$, ${}^{137}Cs$, ${}^{153}Sm$, ${}^{186}Re$, ${}^{188}Re$, ${}^{192}Ir$. The new medical isotopes: ${}^{47}Sc$, ${}^{67}Cu$, ${}^{91}Y$, ${}^{103}Pd$, ${}^{117m}Sn$, ${}^{166}Ho$, ${}^{186}Re$, ${}^{195m}Pt$, ${}^{213}Bi$, ${}^{225}Ac$. The future will be used isotopes: ${}^{64}Cu$, ${}^{67}Ga$, ${}^{68}Ga$, ${}^{89}Sr$, ${}^{64}Y$, ${}^{105}Rh$, ${}^{111}In$, ${}^{124}I$, ${}^{149}Pm$, ${}^{169}Yb$, ${}^{177}Lu$, ${}^{211}At$, ${}^{225}Ac$, ${}^{209}Po$, etc.

For the improvement in analysis neutrino spectra: The decay data especially the β^{-} spectra for 95 Sr, 90 Rb, 92 Rb, 93 Rb, 94 Rb, 100 Nb, 96 Y, 97 Y, 98 Y, 99 Y, 138 I, 140 Cs, 142 Cs should be revised.

For the needs of activation cross section for SAND-II Lib: ⁶³Cu, ¹¹⁵In, ^{175,177}Lu, ¹⁹⁷Au(n, γ); ²³⁵U, ²³⁷Np(n,f); ¹¹⁵In(n,n')^{115m}In; ²⁴Mg, ³¹P, ³²S, ²⁷Al, ^{47,48,nat}Ti, ^{54,56}Fe, ⁵⁹Co, ⁹²Mo, ⁵⁸Ni, ⁶⁴Zn(n,p); ²⁷Al, ⁵⁹Co, ⁶³Cu(n,a); ⁵⁵Mn, ⁵⁸Ni, ⁸⁹Y, ⁹⁰Zr, ¹²⁷I(n,2n).