Proposal to improve the calibration data for conversion electron measurements

I. INTRODUCTION

The accurate measurement of internal conversion coefficient is important to determine transition multipolarities. Conversion coefficients (α) most often determined from the measured electron and gamma-ray intensities and using one or more conversion coefficient from the literature or theory to determine α . As the measurement of gamma-rays and conversion electrons requires fundamentally different spectrometers or detectors. The calibration of the spectrometers is based on measurement of radioactive sources with well known emission energies and emission rates. While the decay data on X-ray and γ -ray calibration sources is relatively well established, see for example the 2007 update [1], there was much less effort to improve the data for electron spectroscopy. This proposal is aiming to improve the data on calibration standards for conversion electron and β -spectroscopy.

Following discussions at the ISTROS 2019 conference [2], a number of scientists using conversion electron, electronpositron pair and β -ray spectroscopy, agreed to participate in an international action to improve the decay data on calibration source. Confirmed participants include:

Tibor Kibédi	Australian National University, Canberra, Australia email: Tibor.Kibedi@anu.edu.au
Xavier Mougeot	CEA, Saclay, France email: xavier.mougeot@cea.fr
Martin Venhart	Institute of Physics, Slovakian Academy of Sciences, Bratislava, Slovakia email: mvenhart@cern.ch
James M. Allmond	Physics Division, Oak Ridge National Laboratory, Oak Ridge, USA email: allmondjm@ornl.gov
Philippos Papadakis	STFC Daresbury Laboratory, Warrington, UK email: philippos.papadakis@stfc.ac.uk
Pete Jones	iThemba Labs, Somerset West, South Africa email: pete@tlabs.ac.za
Enrique Nácher González	Instituto de Física Corpuscular, UV - CSIC, Madrid, Spain email: Enrique.Nacher@csic.es
Alejandro Algora	University of Valencia, Valencia, Spain email: Enrique.Nacher@csic.es
To be confirmed:	
Jaroslaw Perkowski	University of Lodz, Lodz, Poland email: jaroslaw.perkowski@uni.lodz.pl
Adam B Garnsworthy	TRIUMF, Vancouver, Canada email: garns@triumf.ca
John Keightley, Giuseppe Lorusso	Institute. National Physical Laboratory, Teddington, UK email: john.keightley@npl.co.uk, giuseppe.lorusso@npl.co.uk

II. SCOPE

Carry out conversion electron measurements in the participating laboratories to determine the intensities of a selected list of radioisotopes, applying recommended procedures for the calibration of the spectrometers, carry out the experiments and analyse the data. The recommended calibration data will be adopted from the reported intensities. All data will be shared and will be available for future users.

III. POTENTIAL RADIOACTIVE ISOTOPES

The requirements of the calibration of electron spectrometers could depend on a number of factors, including source and spectrometer geometry, the energy range of interest, half life, production using nuclear reactions, etc. For most applications the calibration source has to be very thin, usually an open source, and it has to be inserted into the vacuum space of the spectrometer.

	$T_{1/2}$	Decay mode	Strongest γ -rays	Comments
⁷ Be	53.2 d	EC	477	Single line
$^{51}\mathrm{Cr}$	27.7 d	EC	320	Single line
⁵⁴ Mn	312 d	EC	835	Single line
⁶⁰ Co	1925 d	β^{-}	1173, 1332	Weak CE lines
⁸⁸ Y	107 d	β^+	898, 1836	Weak CE lines
¹⁰⁹ Cd	462 d	EC	88	Single line
¹³³ Ba	10.6 y	EC	53, 80, 81, 302, 356, 383	Many strong CE below 400 keV
137Cs	30 y	β^{-}	662	Single line
$^{152}\mathrm{Eu}$	13.5 y	$\beta^- \beta^+$	122, 244,1408	Many strong CE below 1400 keV
$^{154}\mathrm{Eu}$	8.6 y	β^{-}	123, 248, 591, 692, 723,1596	Many strong CE below 1600 keV
¹⁸² Ta	114.7 d	β^{-}	85, 100, 152, 222, 1121, 1189, 1221, 1231	Many strong CE below 1230 keV, but no γ between 230 and 1100 keV
203 Hg	46.6 d	β^{-}	279	Single line

The basic decay properties of the most commonly used calibration sources are listed below:

IV. CURRENT STATUS OF CALIBRATION DATA

The selection of the isotopes for the present project should based on the evaluation of the existing calibration data in the literature. As an illustration, the data on ¹³³Ba, ¹⁵²Eu and ²⁰⁷Bi are compiled in tables I, II and III. For each radioisotope the relative experimental electron intensities have been normalised to a particular conversion lines corresponding 100 radioactive decay of each parent isotopes. The γ -ray energies and intensities are taken from the latest ENSDF evaluations. The last column of each table, labelled as "ENSDF" is the expected electron intensities obtained using NUDAT2.

V. PROPOSAL FOR INTERNATIONAL EXERCISE TO DEDUCE RECOMMENDED CE INTENSITIES

Similar to the X-ray and gamma-ray calibration data, we propose to approach IAEA, if they willing to coordinate this effort. At least two meetings, one at the beginning to agree the policies and a second one to adopt calibration data and summarize the results would be required. All results, including spectra should be archived and stored for future reference. It is expected a large summary paper should be prepared for publication with the recommended calibration data. The main steps of the project is listed below.

(a): Develop procedures for the calibration, measurement of the spectrometers and data analysis. The efficiency calibration of the spectrometers should be based on combination of experiments, for example using a continuous

beta source and detailed simulations with GEANT4, Penelope, etc. Develop form of reports to make sure histocompatibility

- (b): Review calibration data of potential calibration sources.
- (c): Adopt procedures from (a) and list of radioisotopes (b), agree on work-plan.
- (d): All sources should be prepared in a single laboratory
- (e): Carry out experiments and prepare reports
- (f): Prepare summary report and recommended calibration data

4

REFERENCES

- [1] "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", IAEA, Vienna (2007), STI/PUB/1287 92-0-113606-4 .
- Isospin, STructure, Reactions and energy Of Symmetry (ISTROS), 20-25 October 2019, Bratislava, Slovakia
- [3] Update of X ray and gamma ray decay data standards for detector calibration and other applications, IAEA, Vienna, 2007
- [4] J.E. Thun, S. Tornkvist, K.B. Nielsen, H. Snellman, F. Falk, A. Mocoroa Nucl. Phys. 88, 289 (1966)
- [5] H.J. Hennecke, J.C. Manthuruthil, O. Bergman, C.R. Cothern, Phys. Rev. 159, 955 (1967)
- [6] H.E. Bosch, A.J. Haverfield, E. Szichman, S.M. Abecasis, Nucl. Phys. A108, 209 (1968)
- [7] S. Tornkvist, L. Hasselgren, S. Strom, J.-E. Thun, S. Antman, Nucl. Phys. A142, 238 (1970)
 [8] W. Schneider, Nucl. Phys. 21, 55 (1960)
- 9 P.N. Mukherjee, I. Dutt, A.K. Sen Gupta, R.L. Bhattacharyya, Physica 26, 179 (1960)
- [10] G. Malmsten, O. Nilsson, I. Andersson, Arkiv Fysik 33, 361 (1967)
- [11] J. Deslauriers, S.K. Mark, Nucl. Instrum. Methods 159, 243 (1979)
- 12 V.M. Kartashov, A.G. Troitskaya, G.A. Shevelev, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 705 (1981)
- [13] E. Caurier, B. Grammaticos, M. Ploszajczak, Phys. Lett. 151B, 315 (1985)
- [14] G. Hedin, A. Backlin, Arkiv Fysik 38, 593 (1969)
- [15] F.T. Avignone III, Nucl. Instrum. Methods **116**, 521 (1974)
- [16] Y. Fujita, M. Imamura, K. Omata, Y. Isozumi, S. Ohya, Nucl. Phys. A484, 77 (1988)

	5	ı	exp	ected intensity	of the 356.0129	keV K-shell conver	sion line.		
E_{γ}	I_{γ}	She	II E_{γ}			I_{CE}			
[keV]			[keV]	1966 Th 09	1967He09	1968Bo04	1970 Tool ^(a)	$1970 T_{001}^{(b)}$	ENSDF
53.1622(6)	2.141(32)	() K	17.18	11.0(21)					10.7(21)
		ΓI		1.34(9)	1.11(16)				1.31(26)
79.6142(12)	2.65(5)	Х	43.63	3.83(31)	3.4(5)				3.96(10)
		Γ	73.90	0.53(18)				0.57(4)	0.575(19)
80.9979(11)	32.95(33)	Х	45.01	44.5(16)	38(5)				47.1(8)
~		L1			~			6.60(0.17)	5.69((10)
160.6120(16)	0.638(5)	Х	124.63	0.22(6)	0.144(18)	0.113(4)	0.149(4)	0.1428(34)	0.149(3)
		Γ	154.90			0.029(5)		0.0278(15)	0.0300(9)
223.2368(13)	0.4530(3) K	187.25		0.034(4)	0.024(5)	0.0325(11)		0.0379(6)
276.3989(12)	7.16(5)	Х	240.41		0.33(4)	0.291(8)			0.329(5)
		Γ	270.68			0.0733(17)			0.0603(1)
302.8508(5)	18.34(13)	Х	266.87		0.69(7)	0.647(11)			0.684(12)
		Γ	297.14		к. т	0.107(4)			0.0887(14)
356.0129(7)	62.05(19)	К	320.03	1.31(7)	1.309(19)	1.309(19)	1.309(19)	1.309(19)	1.309
		Γ	350.30			0.262(26)			0.215
383.8485(12)	8.94(6)	К	347.86		0.154(17)	0.223(26)			0.1506(24)
		Γ	378.13			0.0458(15)			0.0241(4)
/	Í								

TABLE I: Calibration data for ¹³³Ba from 1966Th09 [4], 1967He09 [5], 1968Bo04 [6] and 1970To01 [7]. Intensities are given for 100 decays. The expected values from ENSDF were obtained from NuDat2. All reported intensities are normalised to the

^{(a} Magnetic lens spectrometer ^{(b} Double focussing spectrometer

5

$[keV] \\ 121.7817(3) 28.5 \\ 244.6974(8) 7.5 \\ 344.2785(12) 26.5 \\ 36.5 \\ 121.785(12) 26.$	lke	٨			I_{CE}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		V] <u>196(</u>	0Sc14	1960Mu05	1967Ma29	1979 De 22	1981 Ka40	1985Ca08	ENSDF
244.6974(8) 7.5 7.5 344.2785(12) 26.5	(3(16) K 74.)	$95 2^4$	4.2(13)	24.2(25)	18.0(7)	20.2(11)	18.7(5)		19.3(3)
244.6974(8) 7.5 7.5 344.2785(12) 26.5	L 114.	04 1;	2.9(7)	13.9(14)	14.0(6)	11.9(6)	11.05(26)		10.56(18)
344.2785(12) 26.5	$(5(4) ext{ K } 197.)$	86 (0.668(35)	0.63(7)	0.610(27)	0.651(35)	0.635(23)	0.582(23)	0.610(10)
344.2785(12) 26.5	L 236.) 96	0.198(10)	0.198(20)	0.151(11)	0.162(9)	0.157(4)	0.157(7)	0.1563(24)
	(9(20) K 294.	04 (0.824(15)	0.824(15)	0.824(15)	0.824(15)	0.824(15)	0.82(4)	0.824(15)
	L 335.) 06	0.240(13)	0.206(21)	0.198(17)	0.180(16)	0.181(7)	0.191(8)	0.180(3)
411.1165(12) 2.2	37(13) K 360.3	88 (0.0371(26)	0.041(4)	0.0404(34)	0.0420(26)	0.049(4)	0.0441(23)	0.0425(7)
443.9606(16) 2.8	327(14) K 397.	13 (0.0289(33)	0.0247(25)	0.0138(12)	0.0176(10)	0.0223(9)	0.0194(11)	0.0144(4)
586.2648(26) 0.4	155(4) K 536.	03 (0.0338(34)		0.0125(25)	0.0082(8)		0.0103(6)	0.0050(18)
615.41(5) $E0$	K 565.	17 (0.030(4)	0.0066(7)	0.0127(17)	0.0074(8)		0.0090(5)	0.0100
656.489(5) 0.1	441(22)K 609.	99 (0.029(4)	0.0099(10)	0.0091(12)	0.0068(7)		0.0075(4)	0.00708(24)
688.670(5) 0.8	356(6) K 641.3	84 (0.065(10)	0.044(4)	0.0297(25)	0.0272(17)	0.0326(14)	0.0325(16)	0.0305(10)
	L 680.	93					0.0082(8)		0.00437(17)
778.9045(24) 12.9	(8) K 728.4	67 (0.0223(33)	0.0313(33)	0.0214(25)	0.0183(10)	0.0204(11)	0.0218(11)	0.0204(3)
867.380(3) 4.2	(3) K 820.	55 (0.0132(17)	0.0074(8)	0.0115(12)	0.0112(7)	0.0185(10)	0.0136(7)	0.01226(19)
964.057(5) 14.5	$(1(7) \times 917.)$	22 (0.038(6)	0.0321(33)	0.0330(25)	0.0305(17)	0.0354(18)	0.0373(20)	0.0332(5)
	L 956.	32							0.00472(8)
1085.837(10) 10.1	(1(5) Kl039.)) 00	0.0239(33)	0.0107(17)	0.0198(25)	0.0195(12)	0.0214(9)	0.0202(11)	0.0180(3)
1112.076(3) 13.6	i7(8) Kl065	24 (0.030(4)	0.0223(25)	0.0231(25)	0.0207(13)	0.0280(17)	0.0263(14)	0.0233(4)
1408.013(3) 20.8	(1) Kl361.	18 (0.0140(25)	0.0082(8)	0.0094(7)	0.0094(06)	0.0125(8)	0.0109(6)	0.01014(15)

TABLE II: Calibration data for ¹⁵²Eu from 1960Sc14 [8], 1960Mu05 [9], 1967Ma29 [10], 1979De22 [11], 1981Ka40 [12] and

E_{γ}	I_{γ}	Shell	E_{γ}		ICE		
[keV]			[keV]	1969He19	1974Av03	1988Fu05	ENSDF
569.698(2)	97.75(3)	К	481.69	1.55(5)	1.547(22)	1.547(22)	1.537(22)
		Γ	554.41	0.445(16)	0.467(20)	0.432(9)	0.442(6)
		ONM	566.06	0.141(7)	0.161(10)	0.141(4)	0.111(5)
1063.656(3)	74.5(3)	К	975.65	7.03(24)	7.13(24)	7.33(28)	7.08(17)
		Г	1048.10	1.88(8)	1.69(7)	1.87(8)	1.84(5)
		ONM	1059.52	0.584(32)	0.543(35)	0.605(23)	0.44(3)
1770.228(9)	6.87(3)	К	1682.22		0.0195(22)	0.0246(14)	0.0238(12)
		Γ	1754.43		0.00266(30)	0.00387(31)	0.0034(5)
		ONM	1766.41		0.00062(9)	0.00107(11)	0.0010(2)

TABLE III: Calibration data for ²⁰⁷Bi from 1969He19 [14], 1974Av03 [15] and 1988Fu05 [16]. Intensities are given for 100