

An iron evaluation story: from TALYS model parameters to validation on the ASPIS benchmark with the Monte Carlo code TRIPOLI-4 \mathbb{R}

Valeria Raffuzzi, Jean-Christophe Sublet - IAEA, Cédric Jouanne - CEA, Arjan Koning - IAEA, Dimitri Rochman - PSI

PHYSOR 2022

DD-MM-YYYY

Engineering - Energy, Fluid dynamics and Turbo-machinery

Contents

🔺 Introduction

- The ASPIS Iron Benchmark Experiment
- ▲ T6, TALYS and autotalys
- Evaluation construction
 - ⁵⁶Fe
 - ⁵⁴Fe
- Monte Carlo ASPIS results with TRIPOLI-4®
- Conclusions

Introduction

- Iron is an important structural material for nuclear applications
- Good nuclear data are needed for correct modeling
- For most libraries, iron evaluations are still performing poorly in shielding benchmarks
- Examples are the Winfrith Iron and Iron-88 Benchmark
 Experiment (ASPIS)
 - TENDL-2019 underestimates certain experimental results by up to 40%!
- In this work, the code infrastructure T6 is used to produce improved iron evaluations compared to TENDL-2019
- The isotopes considered are ⁵⁶Fe and ⁵⁴Fe

⁵⁴ Fe	5.85%	
⁵⁶ Fe	91.75%	
⁵⁷ Fe	2.12%	
⁵⁸ Fe	0.28%	

ASPIS Iron Benchmark

Fission neutron shielding benchmark

- Deep transmission in the iron bulk up to 120 cm
- Several detectors placed at different depths:
 - 103 Rh(n,n') threshold ~ 500keV
 - 115 In(n,n') threshold ~ 1MeV
 - $^{32}S(n,p) threshold \sim 2MeV$
- Trying to model the high energy detector well, and progressively go down in energy, as suggested by the shielding physics
- The inelastic scattering and continuum cross section are important in the MeV range

T6, TALYS and autotalys

- T6 has been used to produce TENDL libraries since 2008
- Made of TALYS, TARES, TASMAN, TEFAL, TAFIS, TANES
 - TALYS : nucler model code, generates nuclear data beyond the resolved resonance range
 - TARES: resonance parameters computation
 - TASMAN: covariance calculation, uncertainty quantification, linear sensitivity on TALYS model parameters
 - TEFAL: processing into endf file
- The T6 codes can be run in sequence by a script called <u>autotalys</u>

TALYS features

- TALYS input files contain multiplication factor for the nuclear model parameter default values
- 'Best' input file
 - Contains the best parameters, according to current knowledge
 - Assembled through expert opinion
- 🔺 Autonorm
 - Allows to normalise selected cross section channels to match channels from another library
 - Requires a second TALYS run, to renormalise the remaining channels for consistency

n-Fe56 'best' input TENDL-2019

Evaluation construction

Initial attempt

- Trying to fit ⁵⁶Fe and ⁵⁴Fe total inelastic scattering cross section to experimental EXFOR data:
- 1. Running TASMAN linear sensitivity through autotalys
- 2. Identifying parameters with high sensitivity coefficients for MT=4 and low sensitivity for other reaction channels
- 3. Manually varying the 'best' input file, adding the parameter chosen with energy dependence
- Two parameters allowed to fit EXFOR data:
 awdadjust and *d1adjust* (from the Optical Model Potential)

⁵⁶Fe TALYS input files

New input 1

1 #	
2 # General	
3 #	awdadiust-n.table
4 ldmodel 2	
5 #	1 6.0 1.0
6 # (n,tot), (n,el), (n,inl)	2 7.0 0.95
7 #	3 8.0 0.83
	0 0 0 76
awdadjust n 1. awdadjust-n.table	- 0 - 0 - 74
10	5 9.5 0.74
11 # 12 # (n n) (n 2n) (n nn)	6 10.0 0.72
12 # (11,0), (11,21), (11,10) 13 #	7 11.0 0.73
14 rvadiust p 0.99	8 12.0 0.74
15 avadiust p 0.99	9 13.0 0.78
16 gnadjust 26 57 0.90	10 14 0 1 0
17 gpadjust 26 57 0.90	10 14.0 1.0
18 aadjust 25 56 1.12	_
19 pshiftadjust 26 56 -0.2	Energy range:
20 pshiftadjust 25 56 0.1	6 - 14 MoV
21 #	0 - 14 WeV
22 # (n,a)	
23 #	
24 cknock a 1.1	
25 cstrip a 1.1	
26 #	
27 # (n,g)	
28 #	
27 yamyamadjust 20 57 0.07	
31 # Other: Isomers, (n.d), (n.t), (n.b) etc.	
32 #	
υς π	

New input 2

1	#	
2	# General	
3	#	d1adiust-n.table
4	ldmodel 2	
5	#	1 6.0 1.0
6	# (n,tot), (n,el), (n,inl)	2 7.0 0.88
7	#	3 8.0 0.73
8		4 8 5 9 68
10	diadjust n 1. diadjust-n.table	- 0.0 0.00
10	#	5 9.0 0.03
12	(n, n) $(n, 2n)$ (n, nn)	6 9.5 0.58
12	# (11,p), (11,211), (11,11p) #	7 10.0 0.56
14	rvadiust p 0.99	8 12.0 0.56
15	avadiust p 0.99	0 13 0 0 70
16	gnadjust 26 57 0.90	9 13.0 0.70
17	gpadjust 26 57 0.90	10 14.0 1.0
18	aadjust 25 56 1.12	F
19	pshiftadjust 26 56 -0.2	Energy range:
20	pshiftadjust 25 56 0.1	6 – 14 MeV
21	#	
22	# (n,a)	
23	#	
24	cknock a 1.1	
25	cstrip a 1.1	
26	#	
27	# (n,g)	
28	# gamgamadiust 26 57 0 67	
29	gamgamaajast 20 07 0.07 #	
31	# Other: Isomers, (n.d), (n.t), (n.b) etc.	
32	#	

Results Fe-56

- However, other channels were modified too!
- ASPIS results got worse due to the overall modifications
- Fitting differential experimental data blindly is not enough

2.6

2.4

2.2

[**q**] ₀ 1.8

1.6

1.4

1.2

ISSUES:

- Do data exist for that MT?
- Which data to choose?
- Are experiental data reliable?

18

Results Fe-56

0

Cosine

-0.5

quantify, but noticeable, not all is cross-section driven

UNIVERSITY OF CAMBRIDGE

14

12

10

Energy [MeV]

8

-1 6

⁵⁶Fe evaluation

Different approach

- 🔌 Using integral (benchmark) experimental data rather than differential (EXFOR) data
- Comparing TENDL-2019 with JENDL-4.0, which performs well with ASPIS

SCATTERING RADIUS

- Impacts penetrability and hard-sphere shift
- Different in TENDL-2019 and JENDL-4.0 (taken from JEF-2). Here it was corrected
- Affects heavily the resolved resonance range (up to 850 keV in ⁵⁶Fe), e.g. elastic scattering

⁵⁶Fe evaluation

TALYS PARAMETERS

- Used to decrease the inelastic continuum cross section
- Relevant for the high energy detector ³²S
- Also affect other channels, like MT 2!

AUTONORM

- Already used in TENDL-2019 on MT 4, MT 51-54 from 850keV up to 14 MeV
- Energy range decreased to 6MeV for those channels
- Introducing autonorm on MT 2 until 14MeV

⁵⁶Fe evaluation

BACKGROUND

- JENDL-4.0 and TENDL-2019 use a background in the resolved resonance range for capture and total cross section from 500keV to 850keV
- A background has negative side effects when self-shielding and temperature play a role, like in a reactor
- Based on ASPIS it didn't seem necessary, thanks to the modifications in the high energy range, so it was removed
 MAT 2631
 (n,γ)
 (n,

⁵⁴Fe evaluation

MAT 2625 Elastic 26-Fe-54 <u>ONANCE PARAME</u> JENDL-4.0 adopts Reich Moore formalism, (Surger Multi Level Breiter **RESONANCE PARAMETERS and FORMALISM** Cross Section -95.17 To 9999. % Min Max Ratio Ratio JENDL-4.0 (RM) 10^2 TENDL-2019 (MLBW 10^{1} Wigner Section 100 JENDL-4.0 includes more resonances than $1\bar{0}^{1}$ Cross $1\overline{0}^2$ **TENDL-2019** 10^{4} TENDL-2019 (MLBW)/JENDL-4.0 (RM)Ratio 10^{2} The mf2 file has been adopted from 100 JENDL-4.0 in this work, rather than from 10⁵ 10⁶ 2 З 5 6 7 8 9 the Atlas like TENDL-2019 Incident Energy (eV) 26-Fe-54

⁵⁴Fe evaluation

AUTONORM

- In this work, adopted for MT 4 and MT 51-53 and 55 from start of TALYS range until 6MeV
- Also adopted for MT 2 until 14 MeV
- The renormalisation performed in the second TALYS run acted on the continuum too, decreasing it. Thus, modifying TALYS parameters was not needed

⁵⁴Fe evaluation

BACKGROUND

- JENDL-4.0 and TENDL-2019 use a background in the resolved resonance range for capture and total cross section
- Based on ASPIS it didn't seem necessary, so it was removed in this work

⁵⁷Fe evaluation?

An attempt with ⁵⁷Fe was done too. However...

- Impact of small modifications can't be seen in integral benchmarks with natural iron
- Few differential experimental data exist
 - Mainly MT 4 (TENDL-2019 is too high) and MT 1 (TENDL-2019 seems ok, better than JENDL-4.0)
- All major libraries have significant differences in evaluation choices
 - JENDL-4.0 uses RM, TENDL-2019 uses MLBW
 - TENDL-2019 uses autonorm on MT 2,4,102 fitting ENDF/B-VIII.0
 - JENDL-4.0 uses a background for MT 102 and MT 1
 - ENDF/B-VIII.0 has oscillations in MT 51 (so in MT 4 too) and threshold around 15keV, and JENDL-4.0 takes that from ENDF/B. TENDL-2019 and JEFF-3.3 have no structure and different threshold

It is not clear in which direction to move!

Monte Carlo ASPIS results

- The ASPIS Benchmark Experiment was simulated with TRIPOLI-4®
- Big improvements at all energies compared to TENDL-2019
- ▲ The new ⁵⁶Fe and ⁵⁴Fe contributed equally to improve results from TENDL-2019
- The inelastic continuum influenced strongly the ³²S detector only

Monte Carlo ASPIS results

The resonance parameters only impacted the two low energy detector

Lessons learnt

- Differential experimental data are not always the best reference for cross sections especially for scattering, tricky to measure
- TALYS parameters cannot do all the heavy lifting by themself
- The devil is in the detail: resonance parameters make a huge difference and should be double checked
- The use of a background is dangerous, and often goes unnoticed. It should be unnecessary, if the high energy data has been modelled properly

Conclusions and Future Work

CONCLUSIONS

- New evaluation files were produced with T6 for ⁵⁶Fe and ⁵⁴Fe
- They perform extremely well on the ASPIS Iron Benchmark Experiment
- The new input files will be the 'best' inputs of TENDL-2021

FUTURE WORK

- Run MCNP to corroborate TRIPOLI-4®'s results
- Test the files on different benchmarks, e.g. at high energies, like TIARA, and fusion benchmarks

THANK YOU FOR YOUR ATTENTION

