# Summary Report for Special Service Agreement TAL-NAPC20191003-003

Dr. A. C. (Skip) Kahler

Kahler Nuclear Data Services, LLC

April 2020

## **Introduction**

The aim of this work was to review the ICSBEP and IRPhEP Handbooks in order to develop a candidate list of benchmark evaluations that provide data other than simple  $k_{eff}$  and, if feasible, develop MCNP input decks for those benchmarks. A combination of (i) the ICSBEP's "DICE" search tool, (ii) the IRPhEP's "IDAT" tool, and (iii) personal experience, have been utilized to support this effort. There are undoubtedly many additional resources that can be studied in the longer term (a notable example being the IAEA's own Technical Report Series #480, "Research Reactor Benchmarking Database: Facility Specification and Experimental Data") to supplement this list, but the following provides a starting point for potential benchmark testing of evaluated nuclear data files beyond that traditionally done via criticality eigenvalue only calculations.

## **Potential Benchmarks for Further Study**

Based upon the stated review, the following benchmarks seem promising. In many cases a complete geometry model in MCNP form has been developed although the appropriate tally cards may not yet be finalized. A summary of the data available from these benchmarks, including, when available, an MCNP geometry plot, is presented below.

## LEU-COMP-THERM-005 (LCT5)

The ICSBEP LCT5 evaluation describes a series of UO<sub>2</sub> (either 4.3% or 2.35% enriched <sup>235</sup>U) reactor lattice experiments performed at Pacific Northwest Laboratory in the early 1980s. These experiments were sponsored by British Nuclear Fuels Limited and include critical (and subcritical) configurations with differing enrichments, lattice spacing and dissolved gadolinium concentration in the light water moderator and reflector. The ICSBEP evaluation focusses on criticality, but the primary reference (PNL-4976, "Criticality Experiments with Low Enriched UO<sub>2</sub> Fuel Rods in Water Containing Dissolved Gadolinium" which is available in electronic form from <a href="https://www.osti.gov">https://www.osti.gov</a> ) also describes measurements of "fast fission rate", i.e., (<sup>238</sup>U(n,f)/<sup>235</sup>U(n,f)) and "relative conversion rate", i.e., (<sup>238</sup>U(n, $\gamma$ )/<sup>235</sup>U(n,f)) for selected configurations. Previously developed LCT5 MCNP input decks can be modified to calculate these additional experimental data.

## LEU-COMP-THERM-008 (LCT8)

The ICSBEP LCT8 evaluation describes a series of UO<sub>2</sub> (2.46% enriched <sup>235</sup>U) reactor lattice experiments performed at Babcock and Wilcox's Lynchburg Research Center in the early 1970s. This suite of experiments is also known as the B&W Core XI experiments. It consists of a square 45 x 45 central array of water moderated UO<sub>2</sub> fuel rods with various combinations of poison pins and water holes. This central array is surrounded by additional "driver" fuel rods that form a somewhat cylindrical shape. Although the ICSBEP evaluation focusses on criticality, an Appendix is included that provides pin power data, usually over a symmetric octant of the central 15x15 rod array, for 11 different fuel/poison/water hole configurations. Further information is available in the various Babcock and Wilcox reports referenced by the evaluator and which are available in electronic form from <a href="https://www.osti.gov">https://www.osti.gov</a>. A quarter-core MCNP model with the appropriate fuel rod tallies is available. Figures 1 and 2 illustrate the core geometry for LCT8 case 2; first for one of the central region's 15x15 arrays and second for the top, right quadrant quarter core model.

04/01/20 10:04:43 LEU-COMP-THERM-008, rev1, 9/30/2009.

probid = 04/01/20 09:59:09 basis: XY (1.000000, 0.000000, 0.000000) (0.000000, 1.000000, 0.000000) origin: (24.54, 24.54, 5.00) extent = (12.27, 12.27)



Figure 1. Radial slice plot for the LCT8.2 central region 15x15 cluster where pin power data were obtained.

| 04<br>LEU | 4/01/<br>J-COM | 20 10<br>P-THE | 0:07:1 | 0<br>8, re | v1,     |
|-----------|----------------|----------------|--------|------------|---------|
| 9,        | /30/2          | 009.           |        |            |         |
| pro       | bid            | = 04           | 1/01/2 | 0 09:      | 59:09   |
| bas       | 515:           | XY             |        |            |         |
| (:        | 1.000          | 000,           | 0.000  | 000,       | 0.00000 |
| ( )       | 0.000          | 000,           | 1.000  | 000,       | 0.00000 |
|           |                |                |        |            |         |

38.10

38.10.

38.10.

extent = (



Figure 2. Radial slice plot for the LCT8.2 quarter-core model.

## LEU-COMP-THERM-026 (LCT26)

The ICSBEP LCT26 evaluation describes a series of UO<sub>2</sub> (5% enriched <sup>235</sup>U) reactor lattice experiments performed at the MATR facility at the Institute of Physics and Power Engineering in the early 1990s. Three critical lattice arrangements with differing hexagonal pitch are defined at for "cold" (near 20°C) and "hot" (near 200°C) conditions. Sample room temperature MCNP input decks are provided in the evaluation's Appendix but they have not been independently verified at this time.

## LEU-COMP-THERM-032 (LCT32)

The ICSBEP LCT32 evaluation describes a series of UO<sub>2</sub> (10% enriched <sup>235</sup>U) watermoderated lattice configurations of varying lattice spacings in the temperature range from 20°C to 274°C. These experiments were performed in the mid-1960s at the Kurchatov Institute in Russia. MCNP input decks are provided in the evaluation's Appendix but have not been independently verified.

## LEU-COMP-THERM-056 (LCT56)

The ICSBEP LCT56 evaluation describes a water-moderated, water reflected Boiling Water Reactor type fuel assembly configuration (5% enriched <sup>235</sup>U in UO<sub>2</sub>). The experiments were performed at the BORAX-V facility at Idaho National Laboratory in the early 1960s. The evaluation focusses on criticality but the evaluator notes that Reference 1 ("Design and Hazards Summary Report Boiling Reactor Experiment V (BORAX V)", ANL-6302) includes "... core characteristics such as control rod calibrations, excess reactivity, shutdown reactivity margin, reactivity effects of various core components, reactivity effects of temperature and voids, neutron flux and power distributions, and cadmium ratios were measured ...". This document is available in electronic form from https://www.osti.gov. A sample MCNP input deck is provided in the evaluation's Appendix but has not been independently verified at this time.

## HEU-COMP-THERM-022 (HCT22)

The ICSBEP HCT22 evaluation describes a series of 11 critical experiments involving lattices of SPERT III water moderated and water reflected highlyenriched UO<sub>2</sub> plate fuel. The ICSBEP evaluation focusses on developing a criticality model, but the "Supplemental Information" section notes that vertical and radial flux distributions were measured by activation of bare and cadmiumcovered gold foils. Additional data may be found in the references cited by the evaluator. Those documents may be obtained in electronic form from <u>https://www.osti.gov</u>. MCNP geometry models for the 11 cases are available. The following slice plots, Figures 3 and 4, illustrate the central poison rod and adjacent fuel plates for the configuration used for radial and axial flux measurements and their overall position within the full core model.

| 04/01/20 10<br>HEU-COMP-THE<br>9/30/2001. | 0:39:45<br>ERM-022, re | ev0,     |
|-------------------------------------------|------------------------|----------|
| probid = 04<br>basis: XY                  | /01/20 10              | :34:51   |
| ( 1.000000,                               | 0.00000,               | 0.00000) |
| ( 0.000000,                               | 1.000000,              | 0.00000) |
| origin:                                   |                        |          |
| ( 0.00,                                   | 0.00,                  | 5.00)    |
| extent = (                                | 7.62,                  | 7.62)    |



Figure 3. HCT22.11. A radial slice plot illustrating the poison control box and part of the adjacent fuel assemblies.

| 04/01/20 10<br>HEU-COMP-THU<br>9/30/2001. | 0:45:09<br>ERM-022, re | ev0,      |
|-------------------------------------------|------------------------|-----------|
| probid = 04<br>basis: XX                  | 4/01/20 10             | 43:18     |
| / 1 000000                                | 0 000000               | 0 000000  |
| ( 1.000000,                               | 0.000000,              | 0.000000) |
| ( 0.000000,                               | 1.000000,              | 0.00000)  |
| origin:                                   |                        |           |
| ( 0.00,                                   | 0.00,                  | 5.00)     |
| extent = (                                | 20.00,                 | 20.00)    |



Figure 4. A radial slice plot for HCT22, case 11. The full extent of the water reflector is not shown.

#### DIMPLE-LWR-EXP-001 (DIMPLE1)/LEU-COMP-THERM-048 (LCT48)

The DIMPLE S01 experimental program occurred at the UKAEA's Winfrith site in the early 1980s. It included critical experiments with low enriched UO<sub>2</sub> rods (~3.0 wt.% <sup>235</sup>U) with light water moderation and reflection. The ICSBEP LCT48 evaluation, used for criticality calculations, defines a 3D model consisting of 1565 fuel rods positioned in a near cylindrical arrangement. The IRPhEP model is a 2D radial slice used to calculate reaction rate ratios for <sup>235,238</sup>U and <sup>239</sup>Pu fission as well as <sup>238</sup>U capture for a subset of the fuel rods. As shown in Figure 5, the MCNP 2D model takes advantage of the core's quarter-core symmetry.

04/02/20 12:35:12 DIMPLE-LWR-EXP-001, rev0, 3/31/2006. probid = 04/02/20 12:34:52 basis: XY ( 1.000000, 0.000000, 0.000000) ( 0.000000, 1.000000, 0.000000)

(21.45, 21.45, 5.00) extent = (21.45, 21.45)



Figure 5. A quarter-core radial slice plot of the Dimple S01A core.

## DIMPLE-LWR-EXP-002(DIMPLE2)/LEU-COMP-THERM-055 (LCT55)

The DIMPLE S06 experimental program occurred at the UKAEA's Winfrith site in the late 1980s and early 1990s. It included critical experiments with low enriched UO<sub>2</sub> rods (~3.0 wt.% <sup>235</sup>U) in a cruciform array. The experimental program is known as the "S06" series and two core configurations, designated S06A and S06B are described in these evaluations. The S06A core was light water moderated and reflected, similar to the S01 series previously described. The S06B core included a tight-fitting stainless steel region that simulates a PWR core baffle. The ICSBEP LCT55 evaluation, used for criticality calculations, defines a 3D model consisting of 3072 fuel rods. The IRPhEP model is a 2D radial slice used to calculate reaction rate ratios for <sup>235,238</sup>U and <sup>239</sup>Pu fission as well as <sup>238</sup>U capture. As shown in Figure 6, the MCNP 2D model takes advantage of the core's 1/8 (octant)-core symmetry.

| 04/02/20 12<br>DIMPLE-LWR-L | 2:28:08<br>EXP-002. re | . Ove    |
|-----------------------------|------------------------|----------|
| 9/30/2006.                  |                        | ,        |
|                             |                        |          |
| probid = 04                 | 4/02/20 12             | :27:49   |
| basis: XY                   |                        |          |
| ( 1.000000,                 | 0.00000,               | 0.00000) |
| ( 0.000000,                 | 1.000000,              | 0.00000) |
| origin:                     |                        |          |
| ( 30.00,                    | 30.00,                 | 5.00)    |
| extent = (                  | 30.00,                 | 30.00)   |



Figure 6. A radial slice (octant symmetric) of the Dimple S06 core plan. Core S06B (shown here) includes a tight-fitting stainless steel baffle followed by a water reflector. Core S06A omits the baffle and only contains a water reflector.

#### **KRITZ-LWR-RESR-003**

The KRITZ reactor operated in Studsvik, Sweden during the first half of the 1970s, and included several experimental programs, known as KRITZ-2:1, KRITZ-2:13 and KRITZ-2:19. The first two utilized UO<sub>2</sub> fuel rods, the latter mixed-oxide fuel rods. Criticality for KRITZ-2:13 was attained at isothermal conditions at room temperature (22.1°C) and at elevated temperature (243.0°C), using boron concentration and water level. Relative rod fission rates were measured for selected fuel rods at both temperatures. The core is a 40x40 square pitch lattice positioned asymmetrically within the pressure vessel, as shown in the MCNP generated figure below. The MCNP model is for room temperature. Dimensional information is provided in the evaluation to extend this model to the elevated

temperature condition, but that MCNP input file has not yet been created. Thermal expansion causes the rods and lattice to expand, with a corresponding decrease in material number density. This offers the potential to create multiple computer models with and without various thermal expansion to assess what geometry features are most important to precisely model at higher temperatures. Analysis of the KRITZ-2:1 (KRITZ-LWR-RESR-002) data may be a future activity. That core consisted of a 44x44 rod array on a slightly tighter pitch. For that core the rod fission rate data are only available at elevated temperature.



Figure 7. A slice plot of the KRITZ-2:13 core. A 40x40 rod lattice asymmetrically located within the pressure vessel. The borated light water reflector is shown in blue, a saturated steam region is shown in pale green.

## TCA-LWR-EXP-001/LEU-COMP-THERM-006 (LCT6) and -035 (LCT35)

Tank-type Critical Assembly (TCA) experiments designed to yield temperature coefficient of reactivity data near and slightly above room temperature were

performed at JAERI in the late 1980s. The experiments described here consisted of UO<sub>2</sub> (2.6 wt% <sup>235</sup>U) fuel rods in a square-pitched array. Moderation and reflection occurred with light water ("A" cores), borated light water ("B" cores) or soluble gadolinium in light water ("C") cores. Three different array configurations, from as small as 17x18 rods to as large as 26x26 rods were defined for each core type and criticality was attained at a range of temperatures from ~15°C to ~62°C. Nine MCNP models at room temperature are available presently. It is not clear at this time what (if any) thermal expansion effects need to be modelled for these relatively modest temperature increases. The evaluation only provides room temperature dimensions and material number densities. All cores exhibit quarter-core symmetry and one configuration (Core A-1a) consisting of a 21x21 rod array and reflector is shown in Figure 8.



Figure 8. A quarter core slice plot of the TCA, Core A1a model. The full core would be represented by a 21 x 21 rod lattice.

#### CREOLE-PWR-EXP-001

The CREOLE (<u>C</u>oefficient of <u>R</u>eactivity in <u>EOLE</u>) was an experimental program to obtain reactivity temperature coefficient data over a temperature range from room temperature to ~300°C. This measurement program was performed at CEA-Cadarache's EOLE facility in the late 1970s. Data were obtained for UO<sub>2</sub> and mixed-oxide (UO<sub>2</sub>-PuO<sub>2</sub>) lattices. Radial fission rate data were also obtained. An MCNP input deck describing the UO<sub>2</sub> "clean" lattice configuration is provided in the Appendix, but has not been independently verified.

#### FCA-FUND-EXP-001

Fission rate ratio measurements, including for minor actinides, were performed by JAEA in the <u>Fast Critical Assembly at Tokai-mura in the early 1980s</u>. This measurement program is designated FCA IX and includes seven configurations, IX-1 to IX-7. Sample MCNP input files describing both heterogeneous and homogeneous models for FCA IX-7 are provided in the Appendix but have not been verified.

## **MINERVE-FUND-RESR-001**

MINERVE is an experimental pool reactor consisting of a 90% <sup>235</sup>U-enriched driver zone surrounding a square central cavity where a test lattice can be inserted. The core is surrounded by a thick graphite reflector. The measurements described in the evaluation were part of the "CERES Phase II" program. That program provided fission product worth data meant to mimic fission product poisoning found in light-water-reactor spent fuels. The measurements used separated fission product isotopes that were introduced into UO<sub>2</sub> pellets. The isotopes considered in the MINERVE-I program include <sup>147,149,152,nat</sup>Sm, <sup>143,145,nat</sup>Nd, <sup>153</sup>Eu, <sup>155</sup>Gd and <sup>103</sup>Rh. A second program, MINERVE-II included <sup>95</sup>Mo, <sup>99</sup>Tc and <sup>133</sup>Cs. MCNP models were not included in this evaluation report.

## **TENDL-2019 Photonuclear ACE file testing**

Prior to its release near the end of 2019, a testing effort was undertaken for the next generation suite of <u>Talys Evaluated Nuclear Data Library photonuclear files g-</u>TENDL-2019 <u>https://tendl.web.psi.ch/tendl\_2019/tar.html</u>. This was not an effort to validate the physics accuracy of these files, rather to simply verify that the ACE

files produced by NJOY from the underlying TENDL-2019 evaluations were structurally correct and that physically sounds MCNP jobs utilizing these files would run to completion. A "mode e p n" MCNP input deck and ACE files generated at the Agency were utilized for this work. This input, as employed for iron, is shown in the following Table.

| Example photonuclear simulation: find the n spectrum from a disc |  |
|------------------------------------------------------------------|--|
|                                                                  |  |
| c Fe                                                             |  |
| 1 11 -7.86 -11 21 -22                                            |  |
| 2 0 (11:-21:22) -91                                              |  |
| 9 0 91                                                           |  |
|                                                                  |  |
| 11 cz 5.0                                                        |  |
| 21 pz 0.0                                                        |  |
| 22 pz 2.5                                                        |  |
| 91 so 150.0                                                      |  |
|                                                                  |  |
| mode e p n                                                       |  |
| sdef pos=0 0 0 sur=21 vec=0 0 1 dir=1 par=3 erg=20               |  |
| C I I I I I I I I I I I I I I I I I I I                          |  |
| С                                                                |  |
| m11 plib=14p elib=01e nlib=00c pnlib=19u                         |  |
| 26054 0.05845                                                    |  |
| 26056 0.91754                                                    |  |
| 26057 0.02119                                                    |  |
| 26058 0.00282                                                    |  |
| mpn11                                                            |  |
| 26054                                                            |  |
| 26056                                                            |  |
| 26057                                                            |  |
| 26058                                                            |  |
| C                                                                |  |
| fcl:p 1 0 0                                                      |  |
| l ič q:svnq                                                      |  |
| cut:pi 7.320                                                     |  |
| cut:e i 7.320                                                    |  |
|                                                                  |  |
| wwp:e.p.n 5 3 5 0 0                                              |  |
| wwe:e,p,n 20                                                     |  |
| wwn1:e,p 0.2 0.2 -1                                              |  |
|                                                                  |  |

# Table 1. MCNP Input File to Test TENDL-2019Isotopic Iron Photonuclear ACE Files

```
0.0001 0.0001
 wwn1:n
                           -1
С
  e15
          0.01 0.05 0.1 0.4 0.6 0.8 1
          1.25 1.5 1.75 2 2.5 3 3.5 4 5 6 7 8 9 10 12.3858
          0.0 100.0 1.25 0.0
  f15:n
С
 e22
          0.01 0.05 0.1 0.4 0.6 0.8 1
          1.25 1.5 1.75 2 2.5 3 3.5 4 5 6 7 8 9 10 12.3858
          11 21 22 (11 21 22)
  f22:n
С
  nps 25000000
c nps 2500000
С
  print
```

This input file was suitably modified to test the ACE photonuclear nuclear data files for all stable elements/isotopes from Z=3 through Z=83 as well as <sup>232</sup>Th and <sup>234,235,238</sup>U. Values on the "cut:p" and "cut:e" were varied by element as appropriate, or set to minimum of 100 keV. The "nps" card value was set to 250 million or 50 million histories. All jobs ran to completion and in all cases the respective MCNP decks .inp and .outp files were made available to the Agency under the auspice of the CoNDERC project.

## MCNP k<sub>eff</sub> Reproducibility and Uncertainty Assessment

Section 3.3.4.9 of the MCNP<sup>®</sup> User's Manual (LA-UR-17-29981) recommends a minimum of 10,000 neutron histories per cycle when executing kcode jobs in order to avoid a potential bias in the calculation of k<sub>eff</sub>. This is relatively new guidance and might exceed the typical histories per cycle specified in many user's legacy input decks. A suite of six benchmark input decks have been re-run for a fixed number (50 million) of active histories for a variety of neutron histories per cycle in order to assess the magnitude of this potential k<sub>eff</sub> bias. The benchmarks are identified in Table 2. This particular selection allows the potential bias to be assessed for a variety of problem spectra, such as unmoderated FAST and INTERmediate assemblies as well as reflected and unreflected THERMal assemblies.

| Table 2. Legacy Benchmarks Teste | d for Potential k <sub>eff</sub> Calculation Bias |
|----------------------------------|---------------------------------------------------|
| Benchmark Identifier             | Comment                                           |

| HEU-MET-EAST-001 (HME1)         | Godiva. Single homogeneous sphere               |  |  |  |  |  |
|---------------------------------|-------------------------------------------------|--|--|--|--|--|
|                                 | model.                                          |  |  |  |  |  |
|                                 | Big-10. Detailed, heterogeneous discs           |  |  |  |  |  |
|                                 | and annular plates, model.                      |  |  |  |  |  |
|                                 | A small, unreflected cylinder                   |  |  |  |  |  |
|                                 | containing an HEU solution with small           |  |  |  |  |  |
| TEO-30E-TTERNI-050.3 (T3150.3)  | H/U ratio. This is a high leakage               |  |  |  |  |  |
|                                 | thermal assembly                                |  |  |  |  |  |
|                                 | A large, unreflected cylinder                   |  |  |  |  |  |
|                                 | containing an HEU solution with a               |  |  |  |  |  |
| HEU-30L-THERIVI-042.8 (H3142.8) | large H/U ratio. This is a low leakage          |  |  |  |  |  |
|                                 | thermal assembly.                               |  |  |  |  |  |
|                                 | UO <sub>2</sub> lattice with varying rod pitch, |  |  |  |  |  |
| (1  CTE  1  and  1  CTE  12)    | producing a water-to-fuel volume ratio          |  |  |  |  |  |
|                                 | of 0.5 (case 1) or 2.7 (case 12).               |  |  |  |  |  |
|                                 | UO <sub>2</sub> lattice with varying rod pitch, |  |  |  |  |  |
| (1  CT7 1 and 1 CT7 4)          | producing a moderator-to-fuel ratio of          |  |  |  |  |  |
| (LC17.1 dilu LC17.4)            | 1.8 (case 1) or 11.5 (case 4).                  |  |  |  |  |  |

The number of histories/cycle was one of (i) 1000, (ii) 5000, (iii) 10,000, (iv) 20,000, (v) 50,000 or (vi) 100,000. In all instances 50 warmup cycles were run followed by enough active cycles to total 50 million active histories. MCNP's rand card "hist" parameter was initially set to 1 and then advanced by 50 million per job for a total of 20 independent jobs for each of the histories/cycle values noted above, producing six sets of 20 independent jobs.

The individual calculated values are tabulated in Appendix B for each benchmark noted above. While the subsequent discussion focusses in the HMF1 (Godiva) results, the general conclusions are mostly applicable to all of these assemblies.

An analysis of variance was performed on these 120  $k_{calc}$  values. Three possible averages were calculated. First is an average and standard deviation based upon the 120 individual  $k_{calc}$  values. Second, for a given history/cycle value the 20  $k_{calc}$ values were averaged. In addition, those 20  $k_{calc}$  samples were used to estimate the standard deviation of those respective populations for comparison with MCNP's estimated  $k_{eff}$  uncertainty. A third grouping of these data was to average the six  $k_{calc}$  values for the same starting "hist" value. This yielded 20 additional  $k_{calc}$  averages.

As the primary concern to be addressed was the potential for a calculated  $k_{eff}$  bias, we review the HMF1 average calculated eigenvalue as a function of histories/cycle. From 100,000 histories/cycle to 1,000 histories/cycle those average results are 1.00006±0.00002, 1.00008±0.00003, 1.00007±0.00002, 1.00002±0.00002 and 1.00003±0.00003 and 0.99995±0.00003, respectively. The results for 20,000 histories/cycle and above are tightly clustered at about 1.00007±0.00002 and then decrease for the 10,000 histories/cycle and 5,000 histories/cycle jobs, bottoming out at an average of 0.99995±0.00003 for the 1,000 histories/cycle. As determined by an ANOVA (Analysis of Variance) F-Test, performed at the 95% confidence level, this is a statistically significant difference and supports the assertion that calculated  $k_{eff}$  is biased when running with too small a particle history/cycle value. However, it should be noted that this potential bias is small, amounting to about 10 pcm, a value not that different from the calculated  $k_{eff}$  uncertainty for a 50 million history job.

Applying the same analysis to the other benchmarks yields mixed results. In all cases it is always the 1,000 histories/cycle average that deviates from the remaining history/cycle average. For the intermediate spectrum IMF7 (Big-10) assembly there is also evidence for a small, again about 10 pcm, calculated  $k_{eff}$ bias. The ANOVA 95% F-Test also supports a difference in calculated k<sub>eff</sub> among the difference particle histories/cycles. But for the six thermal spectrum assemblies, the F-Test only suggests a difference for the HST42.8, LCT7.1 and LCT5.12 benchmarks, while there is no statistically significant difference in the HST50.3, LCT7.4 or LCT5.1 benchmark k<sub>eff</sub> calculations. There does not appear to be a pattern among these six cases. For example, between the two solution benchmarks the HST42.8 assembly is more "thermal" than HST50.3 while for the LCTs the 7.4 and 5.1 configurations are more "thermal" than 7.1 and 5.12, respectively. For those cases where a statistically significant difference was seen, that difference was about 12 pcm and so is similar in magnitude to that for the intermediate spectrum (IMF7, Big-10) and fast spectrum (HMF1, Godiva) assemblies. When not deemed statistically significant the difference was as small as 2 pcm.

Hence from this limited study we conclude there is marginal evidence for a small, on the order of 10 pcm, bias in calculated  $k_{eff}$  when running MCNP criticality problems if the history/cycle value is on the order of 1,000. For 5,000 or more (once again, the MCNP manual recommends a minimum of 10,000) histories/cycle there is likely no bias in calculated  $k_{eff}$ , at least for a sensitivity level of around 10 pcm.

Another feature of these calculations is the ability to assess the validity of MCNP's  $k_{eff}$  uncertainty. Returning to the HMF1 (Godiva) results we see that the typical uncertainty is about 8 pcm. For each of the twenty sets of kcode jobs we may also calculate an estimated standard deviation which is found to be 8.3 pcm, 12.7 pcm, 8.2 pcm, 9.7 pcm, 11.3 pcm and 11.0 pcm for the 100,000 histories/cycle to 1,000 histories/cycle, respectively. These results suggest that the MCNP  $k_{eff}$  uncertainty may be slightly underestimated. The same is true for the other assemblies.

A final observation of interest. The range of calculated  $k_{eff}$  values seen (see the "pop. min" and "pop. max" rows) often spans a range of 4 or more times the estimated population standard deviation. This is an entirely reasonable result for a 20-sample population, and serves as a stark reminder to all that when a Monte Carlo result is obtained with a plus or minus standard deviation band that the true result will actually be outside of that band about 1/3 of the time. Quoting a result with a corresponding 95% confidence interval provides a much more realistic assessment of the bounding interval where the true answer resides.

## **Conclusions, Observations and Recommendations**

A primary goal of this work was to identify potential critical benchmarks from the ICSBEP and IRPhEP Handbooks that could be used to supplement nuclear data testing. Past data testing efforts have focused almost exclusively on assessing the accuracy of nuclear data for predicting  $k_{eff}$  at room temperature. The proposed list of benchmarks provided above has the potential to allow data testing to expand beyond that, to include temperature coefficient of reactivity, reactor pin power and spectral index calculations that are then compared to measured data.

In some instances, MCNP models have already been developed and require minimal or no modification to use. A list of the input files that were provided to the Agency in electronic form is provided in Appendix A.

The benchmarks identified here are by no means an exclusive list. Much further research is warranted in order to extend this initial benchmark suite. In addition, users are cautioned that the benchmark specifications may sometimes need to be enhanced. As these evaluations age, some of which are up to 20 years old, the approximations and simplifications made at that time and judged to be insignificant (by the standards of the day) might no longer be insignificant. The precision (and hopefully the accuracy) of modern and future calculations will only increase as the capability and availability of computers increases, and so it is only natural that the sophistication of the underlying computer models should also increase.

In that regard, as future calculations shift from just  $k_{eff}$  to include additional types of data there will likely be renewed questions about the minimum acceptable running strategy. For example, a typical k<sub>eff</sub> calculation might use 50 million or so active neutron histories to yield an acceptable uncertainty on calculated k<sub>eff</sub>. The studies documented above suggest that the current MCNP user guidance of a minimum of 10,000 histories/cycle is sufficiently large so that there is no history/cycle bias in that calculation. But as user's progress to calculate other quantities such as spectral indices, pin power distributions, temperature coefficients, etc. does the same guidance hold? Those jobs will almost certainly be much larger. Past, albeit limited, experience suggests that jobs of 1 billion active histories or more will be necessary to achieve the required statistical uncertainty for meaningful C/E comparisons. What should the running strategy be for those jobs? Will 2.5 million active histories/cycle for 400 cycles work, or will a future MCNP user guidance recommend not only a minimum history/cycle value but include a minimum number of cycles (hundreds, thousands, ...)? It would seem that sensitivity studies, perhaps covering a range of 2.5 million histories/cycle for 400 cycles down to 100,000 histories/cycle for 5,000 cycles, to determine the reproducibility of various calculated parameters would be useful. And even the one billion active history number is somewhat arbitrary. Will replicate jobs of 250 million histories suffice? Or are 5 billion histories needed? Again, a range of sensitivity studies is recommended to provide guidance to users.

# <u>Appendix A</u>

Presented here is a listing of all electronic files shared with the Agency as part of this contract.

| Filename(s)                                                              | Description                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lct008xx_3Dqc.e80_00c_250M.inp                                           | Quarter-core MCNP input for LCT8, case xx<br>(xx ranges from 02 to 09 plus 11, 16 and 17).<br>Fission rate tallies for <sup>234,235,238</sup> U as well as<br>the fuel material are accrued over a 16 cm                                                                                                                                                                               |
|                                                                          | region centered at the axial midplane for<br>each rod in the central 15x15 rod region<br>(cases 02-09 and 11).                                                                                                                                                                                                                                                                         |
| hct022xx.e80_00c_250M.inp                                                | Full-core MCNP input for HCT22, case xx (xx<br>ranges from 01 to 11). Further research is<br>needed to determine what experimental<br>data are available and what tally definitions<br>are appropriate.                                                                                                                                                                                |
| dimple1_S01A_2Dqc.e80_00c_250M.inp                                       | Quarter-core 2D MCNP input for DIMPLE-<br>LWR-EXP-001. Reaction rate tally definitions<br>( <sup>235,238</sup> U and <sup>239</sup> Pu fission, <sup>238</sup> U capture and<br>individual fuel rod fission) are specified for<br>each rod in the model.                                                                                                                               |
| dimple2_S06A_2Doc.e80_00c.250M.inp<br>dimple2_S06B_2Doc.e80_00c.250M.inp | 2D MCNP input for DIMPLE-LWR-EXP-002's<br>S06A and S06B with octant symmetry.<br>Reaction rate tally definitions ( <sup>235,238</sup> U and<br><sup>239</sup> Pu fission, <sup>238</sup> U capture and individual fuel<br>rod fission) are specified for each rod in the<br>model.                                                                                                     |
| kritz213_22C.e80_00c_250M.inp                                            | MCNP input for KRITZ-LWR-RESR-003 at 22°C.<br>This is a full-core model for a 40x40 rod array<br>asymmetrically positioned within its pressure<br>vessel. Reaction rate tally definitions ( <sup>235,238</sup> U<br>and <sup>239</sup> Pu fission, <sup>238</sup> U capture and individual<br>fuel rod fission) over an 11 cm axial region<br>are specified for each rod in the model. |

#### **MCNP Input File Summary**

| tca.a?_qc.e80_00c_250M.inp<br>tca.b?_qc.e80_00c_250M.inp<br>tca.c?_qc.e80_00c_250M.inp | MCNP input for TCA-LWR-EXP-001, core<br>types "a", "b" and "c". There are three<br>slightly different lattice configurations for<br>each core type; designated "1a", "2a" and<br>"3" for type "a" and designated as "1", "2"<br>and "3" for core types "b" and "c". Critical<br>configurations are defined at a range of<br>temperatures from ~15°C to ~62°C. Nine<br>room temperature input files are available at<br>present. |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note: All input decks currently use LANL prod                                          | uced ENDF/B-VIII.0 room temperature (.00c or                                                                                                                                                                                                                                                                                                                                                                                    |
| .80t) cross section data. The current kcode cal                                        | rd calls for 100 warmup cycles followed by                                                                                                                                                                                                                                                                                                                                                                                      |
| 5000 active cycles with 50,000 histories/cycle.                                        | This will yield 250 million active histories. A                                                                                                                                                                                                                                                                                                                                                                                 |
| variety of other commented kcode cards are a                                           | lso included in each input file. Sensitivity                                                                                                                                                                                                                                                                                                                                                                                    |
| calculations are recommended to determine t                                            | he optimum job size for each problem.                                                                                                                                                                                                                                                                                                                                                                                           |

#### Appendix B

Independent MCNP  $k_{calc}$  values, uncertainties and selected average and population standard deviation calculations for the Godiva (HEU-MET-FAST-001), Big-10 (IEU-MET-FAST-007), HEU-SOL-THERM-042.8, HEU-SOL-THERM-050.3, LEU-COMP-THERM-005.1 & 005.12 and LEU-COMP-THERM-007.1 & -007.4 critical assemblies are tabulated on the following pages.

MCNP  $k_{calc}$  values and uncertainties for Godiva (HEU-MET-FAST-001). Results are for 20 independent jobs using one of the six kcode parameter strategies (100,000 histories/cycle, 50,000 histories/cycle, ..., 1000 histories/cycle) identified previously. Minimum and maximum  $k_{calc}$  values for each kcode parameter strategy a noted in red and green, respectively.

|                  |         |         | $k_{calc}$ and unc |     | $k_{calc}$ and unc |      | $k_{calc}$ and unc |     | $k_{calc}$ and unc |     | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      |
|------------------|---------|---------|--------------------|-----|--------------------|------|--------------------|-----|--------------------|-----|--------------------|------|--------------------|------|
| Job              | Average | Pop. SD | 100K               |     | 50K                |      | 20K                |     | 10K                |     | 5K                 |      | 1K                 |      |
| 1                | 1.00009 | 10.6    | 0.99992            | 9   | 1.00024            | 8    | 1.00014            | 8   | 1.00007            | 8   | 1.00009            | 8    | 1.00005            | 8    |
| 2                | 1.00004 | 7.7     | 1.00012            | 8   | 1.00012            | 9    | 1.00000            | 8   | 1.00007            | 8   | 0.99996            | 8    | 0.99995            | 8    |
| 3                | 1.00002 | 13.6    | 0.99997            | 9   | 1.00022            | 9    | 1.00007            | 8   | 1.00009            | 9   | 0.99987            | 8    | 0.99988            | 8    |
| 4                | 0.99990 | 7.2     | 0.99992            | 8   | 0.99994            | 8    | 1.00001            | 9   | 0.99980            | 8   | 0.99986            | 8    | 0.99988            | 8    |
| 5                | 0.99999 | 7.5     | 0.99998            | 9   | 0.99998            | 9    | 1.00008            | 8   | 1.00004            | 8   | 1.00000            | 8    | 0.99986            | 8    |
| 6                | 1.00006 | 6.9     | 1.00002            | 8   | 1.00011            | 9    | 1.00015            | 8   | 1.00001            | 8   | 0.99997            | 8    | 1.00009            | 8    |
| 7                | 1.00000 | 6.1     | 0.99999            | 8   | 1.00004            | 8    | 1.00009            | 9   | 0.99998            | 8   | 0.99991            | 8    | 0.99999            | 8    |
| 8                | 1.00006 | 6.2     | 1.00004            | 8   | 1.00017            | 8    | 1.00001            | 8   | 1.00000            | 8   | 1.00006            | 8    | 1.00008            | 8    |
| 9                | 1.00007 | 14.1    | 1.00014            | 8   | 1.00016            | 8    | 1.00018            | 8   | 1.00001            | 9   | 1.00013            | 8    | 0.99981            | 8    |
| 10               | 1.00007 | 5.8     | 1.00004            | 9   | 1.00016            | 8    | 1.00002            | 8   | 1.00006            | 8   | 1.00001            | 8    | 1.00011            | 8    |
| 11               | 1.00000 | 3.9     | 1.00005            | 8   | 1.00001            | 8    | 1.00003            | 9   | 0.99997            | 9   | 0.99996            | 8    | 0.99996            | 8    |
| 12               | 1.00005 | 11.7    | 1.00024            | 9   | 1.00010            | 9    | 0.99991            | 8   | 1.00008            | 8   | 0.99998            | 8    | 0.99998            | 8    |
| 13               | 1.00000 | 14.8    | 1.00016            | 9   | 1.00015            | 9    | 0.99996            | 8   | 0.99988            | 8   | 1.00004            | 8    | 0.99979            | 8    |
| 14               | 1.00010 | 8.7     | 1.00008            | 8   | 1.00020            | 8    | 1.00003            | 8   | 1.00019            | 8   | 1.00009            | 8    | 0.99998            | 8    |
| 15               | 1.00012 | 7.2     | 1.00007            | 8   | 1.00010            | 8    | 1.00023            | 8   | 1.00013            | 8   | 1.00017            | 8    | 1.00003            | 8    |
| 16               | 1.00009 | 16.1    | 1.00017            | 9   | 1.00008            | 9    | 1.00000            | 8   | 1.00009            | 8   | 1.00034            | 8    | 0.99986            | 8    |
| 17               | 1.00008 | 7.2     | 1.00009            | 9   | 1.00021            | 8    | 1.00004            | 8   | 1.00002            | 8   | 1.00010            | 8    | 1.00002            | 8    |
| 18               | 0.99994 | 9.9     | 1.00005            | 9   | 0.99993            | 9    | 1.00006            | 8   | 0.99990            | 8   | 0.99991            | 8    | 0.99980            | 8    |
| 19               | 1.00002 | 9.3     | 1.00007            | 8   | 0.99987            | 8    | 1.00009            | 8   | 0.99993            | 8   | 1.00009            | 8    | 1.00004            | 8    |
| 20               | 0.99999 | 19.1    | 1.00001            | 8   | 0.99977            | 8    | 1.00020            | 9   | 1.00017            | 8   | 1.00001            | 8    | 0.99975            | 8    |
| Average          | 1.00003 | 11.0    | 1.00006            | 8.3 | 1.00008            | 12.7 | 1.00007            | 8.2 | 1.00002            | 9.7 | 1.00003            | 11.3 | 0.99995            | 11.0 |
| pop. min         | 0.99975 | min     | 0.99992            |     | 0.99977            |      | 0.99991            |     | 0.99980            |     | 0.99986            |      | 0.99975            |      |
| pop. max         | 1.00034 | max     | 1.00024            |     | 1.00024            |      | 1.00023            |     | 1.00019            |     | 1.00034            |      | 1.00011            |      |
| max-min,<br>pcm: | 59      |         | 32                 |     | 47                 |      | 32                 |     | 39                 |     | 48                 |      | 36                 |      |

MCNP  $k_{calc}$  values and uncertainties for Big-10 (IEU-MET-FAST-007). Results are for 20 independent jobs using one of the six kcode parameter strategies (100,000 histories/cycle, 50,000 histories/cycle, ..., 1000 histories/cycle) identified previously. Minimum and maximum  $k_{calc}$  values for each kcode parameter strategy a noted in red and green, respectively.

|                  |         |         | $k_{calc}$ and unc |     | $k_{calc}$ and unc |     | k <sub>calc</sub> and unc |      | $k_{calc}$ and unc |     | $k_{calc}$ and unc |     | $\mathbf{k}_{calc}$ and | unc  |
|------------------|---------|---------|--------------------|-----|--------------------|-----|---------------------------|------|--------------------|-----|--------------------|-----|-------------------------|------|
| Job              | Average | Pop. SD | 100K               |     | 50K                |     | 20K                       |      | 10K                |     | 5K                 |     | 1K                      |      |
| 1                | 1.00420 | 8.0     | 1.00417            | 8   | 1.00424            | 7   | 1.00424                   | 7    | 1.00422            | 7   | 1.00429            | 7   | 1.00406                 | 7    |
| 2                | 1.00424 | 12.6    | 1.00415            | 7   | 1.00435            | 7   | 1.00433                   | 7    | 1.00412            | 7   | 1.00437            | 8   | 1.00410                 | 7    |
| 3                | 1.00425 | 14.3    | 1.00416            | 7   | 1.00422            | 8   | 1.00451                   | 7    | 1.00429            | 7   | 1.00422            | 8   | 1.00410                 | 7    |
| 4                | 1.00416 | 9.0     | 1.00407            | 8   | 1.00432            | 7   | 1.00410                   | 8    | 1.00411            | 7   | 1.00414            | 7   | 1.00419                 | 7    |
| 5                | 1.00421 | 12.8    | 1.00430            | 7   | 1.00408            | 7   | 1.00424                   | 8    | 1.00436            | 7   | 1.00425            | 7   | 1.00403                 | 7    |
| 6                | 1.00429 | 2.7     | 1.00429            | 7   | 1.00432            | 7   | 1.00429                   | 7    | 1.00430            | 7   | 1.00427            | 7   | 1.00424                 | 7    |
| 7                | 1.00425 | 12.8    | 1.00425            | 7   | 1.00437            | 8   | 1.00438                   | 7    | 1.00431            | 7   | 1.00413            | 8   | 1.00407                 | 7    |
| 8                | 1.00427 | 15.4    | 1.00406            | 7   | 1.00432            | 7   | 1.00453                   | 7    | 1.00428            | 8   | 1.00422            | 8   | 1.00423                 | 7    |
| 9                | 1.00426 | 11.7    | 1.00428            | 8   | 1.00439            | 8   | 1.00428                   | 7    | 1.00428            | 7   | 1.00431            | 8   | 1.00404                 | 7    |
| 10               | 1.00429 | 8.3     | 1.00434            | 7   | 1.00424            | 8   | 1.00443                   | 8    | 1.00425            | 7   | 1.00429            | 7   | 1.00420                 | 7    |
| 11               | 1.00421 | 5.5     | 1.00425            | 8   | 1.00425            | 8   | 1.00421                   | 8    | 1.00419            | 7   | 1.00425            | 7   | 1.00411                 | 7    |
| 12               | 1.00434 | 7.0     | 1.00428            | 7   | 1.00428            | 8   | 1.00436                   | 7    | 1.00444            | 7   | 1.00428            | 7   | 1.00440                 | 7    |
| 13               | 1.00421 | 13.3    | 1.00404            | 7   | 1.00432            | 7   | 1.00433                   | 8    | 1.00433            | 7   | 1.00414            | 7   | 1.00409                 | 7    |
| 14               | 1.00418 | 8.3     | 1.00425            | 7   | 1.00425            | 8   | 1.00418                   | 7    | 1.00416            | 8   | 1.00403            | 7   | 1.00422                 | 7    |
| 15               | 1.00429 | 6.3     | 1.00421            | 8   | 1.00437            | 7   | 1.00431                   | 7    | 1.00433            | 7   | 1.00422            | 7   | 1.00428                 | 7    |
| 16               | 1.00423 | 9.6     | 1.00429            | 8   | 1.00422            | 7   | 1.00431                   | 8    | 1.00412            | 7   | 1.00434            | 7   | 1.00412                 | 7    |
| 17               | 1.00428 | 6.4     | 1.00429            | 7   | 1.00420            | 7   | 1.00439                   | 7    | 1.00428            | 7   | 1.00424            | 8   | 1.00428                 | 7    |
| 18               | 1.00424 | 13.3    | 1.00405            | 7   | 1.00416            | 7   | 1.00430                   | 7    | 1.00443            | 7   | 1.00431            | 8   | 1.00420                 | 7    |
| 19               | 1.00423 | 7.4     | 1.00433            | 8   | 1.00420            | 7   | 1.00421                   | 7    | 1.00412            | 7   | 1.00420            | 7   | 1.00429                 | 7    |
| 20               | 1.00427 | 3.9     | 1.00430            | 7   | 1.00430            | 8   | 1.00420                   | 7    | 1.00428            | 8   | 1.00427            | 7   | 1.00424                 | 7    |
| Average          | 1.00424 | 10.2    | 1.00422            | 9.8 | 1.00427            | 7.9 | 1.00431                   | 10.8 | 1.00426            | 9.9 | 1.00424            | 8.1 | 1.00417                 | 10.0 |
| pop. min         | 1.00403 | min     | 1.00404            |     | 1.00408            |     | 1.00410                   |      | 1.00411            |     | 1.00403            |     | 1.00403                 |      |
| pop. max         | 1.00453 | max     | 1.00434            |     | 1.00439            |     | 1.00453                   |      | 1.00444            |     | 1.00437            |     | 1.00440                 |      |
| max-min,<br>pcm: | 50      |         | 30                 |     | 31                 |     | 43                        |      | 33                 |     | 34                 |     | 37                      |      |

MCNP  $k_{calc}$  values and uncertainties for HEU-SOL-THERM-050.3). Results are for 20 independent jobs using one of the six kcode parameter strategies (100,000 histories/cycle, 50,000 histories/cycle, ..., 1000 histories/cycle) identified previously. Minimum and maximum  $k_{calc}$  values for each kcode parameter strategy a noted in red and green, respectively.

|                  |         |         | k <sub>calc</sub> and unc |      | k <sub>calc</sub> and unc |      | $k_{calc}$ and unc |      |
|------------------|---------|---------|---------------------------|------|---------------------------|------|--------------------|------|--------------------|------|--------------------|------|--------------------|------|
| Job              | Average | Pop. SD | 100K                      |      | 50K                       |      | 20K                |      | 10K                |      | 5K                 |      | 1K                 |      |
| 1                | 1.00239 | 13.8    | 1.00237                   | 14   | 1.00247                   | 14   | 1.00255            | 15   | 1.00236            | 14   | 1.00246            | 15   | 1.00215            | 15   |
| 2                | 1.00235 | 6.6     | 1.00232                   | 15   | 1.00225                   | 14   | 1.00234            | 14   | 1.00238            | 15   | 1.00235            | 15   | 1.00245            | 15   |
| 3                | 1.00235 | 13.0    | 1.00259                   | 15   | 1.00233                   | 15   | 1.00231            | 14   | 1.00239            | 14   | 1.00221            | 14   | 1.00229            | 15   |
| 4                | 1.00235 | 10.5    | 1.00236                   | 16   | 1.00231                   | 14   | 1.00232            | 15   | 1.00251            | 14   | 1.00242            | 15   | 1.00220            | 15   |
| 5                | 1.00235 | 13.9    | 1.00221                   | 15   | 1.00253                   | 15   | 1.00231            | 15   | 1.00230            | 15   | 1.00224            | 15   | 1.00252            | 15   |
| 6                | 1.00247 | 23.4    | 1.00260                   | 14   | 1.00265                   | 15   | 1.00272            | 14   | 1.00217            | 15   | 1.00248            | 15   | 1.00220            | 15   |
| 7                | 1.00242 | 6.0     | 1.00237                   | 14   | 1.00241                   | 14   | 1.00243            | 15   | 1.00245            | 15   | 1.00251            | 15   | 1.00234            | 15   |
| 8                | 1.00232 | 11.2    | 1.00215                   | 15   | 1.00247                   | 15   | 1.00228            | 15   | 1.00228            | 15   | 1.00241            | 15   | 1.00232            | 15   |
| 9                | 1.00240 | 13.1    | 1.00256                   | 15   | 1.00242                   | 15   | 1.00217            | 15   | 1.00235            | 15   | 1.00245            | 15   | 1.00245            | 15   |
| 10               | 1.00237 | 12.2    | 1.00235                   | 15   | 1.00241                   | 15   | 1.00253            | 15   | 1.00241            | 14   | 1.00234            | 15   | 1.00216            | 15   |
| 11               | 1.00248 | 14.1    | 1.00249                   | 15   | 1.00242                   | 14   | 1.00234            | 14   | 1.00275            | 14   | 1.00243            | 15   | 1.00247            | 15   |
| 12               | 1.00242 | 11.1    | 1.00235                   | 14   | 1.00231                   | 14   | 1.00237            | 14   | 1.00245            | 15   | 1.00262            | 15   | 1.00239            | 15   |
| 13               | 1.00248 | 9.2     | 1.00249                   | 14   | 1.00258                   | 15   | 1.00242            | 15   | 1.00245            | 14   | 1.00257            | 15   | 1.00234            | 15   |
| 14               | 1.00239 | 10.6    | 1.00244                   | 15   | 1.00250                   | 15   | 1.00237            | 15   | 1.00231            | 15   | 1.00250            | 15   | 1.00224            | 15   |
| 15               | 1.00223 | 19.1    | 1.00211                   | 15   | 1.00212                   | 14   | 1.00235            | 14   | 1.00251            | 14   | 1.00199            | 15   | 1.00231            | 15   |
| 16               | 1.00236 | 31.9    | 1.00278                   | 15   | 1.00215                   | 14   | 1.00210            | 15   | 1.00275            | 14   | 1.00222            | 15   | 1.00214            | 15   |
| 17               | 1.00231 | 11.0    | 1.00213                   | 15   | 1.00222                   | 15   | 1.00242            | 14   | 1.00237            | 15   | 1.00235            | 15   | 1.00236            | 15   |
| 18               | 1.00231 | 17.3    | 1.00228                   | 14   | 1.00223                   | 15   | 1.00257            | 15   | 1.00243            | 15   | 1.00225            | 14   | 1.00207            | 15   |
| 19               | 1.00242 | 12.2    | 1.00218                   | 14   | 1.00239                   | 15   | 1.00247            | 15   | 1.00245            | 15   | 1.00250            | 15   | 1.00250            | 15   |
| 20               | 1.00224 | 15.8    | 1.00201                   | 14   | 1.00245                   | 15   | 1.00228            | 15   | 1.00236            | 14   | 1.00219            | 14   | 1.00214            | 15   |
| Average          | 1.00237 | 15.3    | 1.00236                   | 19.4 | 1.00238                   | 14.0 | 1.00238            | 14.1 | 1.00242            | 13.8 | 1.00237            | 15.4 | 1.00230            | 13.5 |
| pop. min         | 1.00199 | min     | 1.00201                   |      | 1.00212                   |      | 1.00210            |      | 1.00217            |      | 1.00199            |      | 1.00207            |      |
| pop. max         | 1.00278 | max     | 1.00278                   |      | 1.00265                   |      | 1.00272            |      | 1.00275            |      | 1.00262            |      | 1.00252            |      |
| max-min,<br>pcm: | 79      |         | 77                        |      | 53                        |      | 62                 |      | 58                 |      | 63                 |      | 45                 |      |

MCNP  $k_{calc}$  values and uncertainties for HEU-SOL-THERM-042.8. Results are for 20 independent jobs using one of the six kcode parameter strategies (100,000 histories/cycle, 50,000 histories/cycle, ..., 1000 histories/cycle) identified previously. Minimum and maximum  $k_{calc}$  values for each kcode parameter strategy a noted in red and green, respectively.

|                  |         |         | k <sub>calc</sub> and unc |     | k <sub>calc</sub> and unc |     | $k_{\text{calc}}$ and unc |     | k <sub>calc</sub> and unc |     | $k_{calc}$ and unc |      | $k_{\text{calc}}$ and $\iota$ | inc |
|------------------|---------|---------|---------------------------|-----|---------------------------|-----|---------------------------|-----|---------------------------|-----|--------------------|------|-------------------------------|-----|
| Job              | Average | Pop. SD | 100K                      |     | 50K                       |     | 20K                       |     | 10K                       |     | 5K                 |      | 1K                            |     |
| 1                | 1.00074 | 6.0     | 1.00070                   | 4   | 1.00071                   | 3   | 1.00080                   | 3   | 1.00083                   | 3   | 1.00074            | 3    | 1.00068                       | 3   |
| 2                | 1.00078 | 12.4    | 1.00076                   | 4   | 1.00079                   | 3   | 1.00093                   | 3   | 1.00085                   | 3   | 1.00081            | 3    | 1.00056                       | 3   |
| 3                | 1.00072 | 6.9     | 1.00071                   | 4   | 1.00075                   | 3   | 1.00069                   | 3   | 1.00083                   | 3   | 1.00073            | 3    | 1.00062                       | 3   |
| 4                | 1.00079 | 9.3     | 1.00074                   | 3   | 1.00083                   | 3   | 1.00088                   | 3   | 1.00082                   | 3   | 1.00083            | 3    | 1.00062                       | 3   |
| 5                | 1.00080 | 11.8    | 1.00075                   | 3   | 1.00082                   | 4   | 1.00069                   | 3   | 1.00098                   | 3   | 1.00087            | 3    | 1.00067                       | 3   |
| 6                | 1.00077 | 7.0     | 1.00074                   | 4   | 1.00077                   | 3   | 1.00082                   | 3   | 1.00074                   | 3   | 1.00086            | 3    | 1.00066                       | 3   |
| 7                | 1.00070 | 10.5    | 1.00068                   | 3   | 1.00082                   | 3   | 1.00063                   | 3   | 1.00079                   | 3   | 1.00054            | 3    | 1.00074                       | 3   |
| 8                | 1.00079 | 12.0    | 1.00069                   | 4   | 1.00085                   | 4   | 1.00092                   | 3   | 1.00093                   | 3   | 1.00070            | 3    | 1.00067                       | 3   |
| 9                | 1.00077 | 13.0    | 1.00082                   | 4   | 1.00072                   | 3   | 1.00085                   | 3   | 1.00082                   | 3   | 1.00088            | 3    | 1.00053                       | 3   |
| 10               | 1.00076 | 9.0     | 1.00074                   | 4   | 1.00070                   | 3   | 1.00081                   | 3   | 1.00076                   | 3   | 1.00089            | 3    | 1.00063                       | 3   |
| 11               | 1.00076 | 9.7     | 1.00061                   | 4   | 1.00081                   | 3   | 1.00088                   | 3   | 1.00079                   | 3   | 1.00078            | 3    | 1.00068                       | 3   |
| 12               | 1.00076 | 10.8    | 1.00067                   | 3   | 1.00078                   | 3   | 1.00086                   | 3   | 1.00088                   | 3   | 1.00060            | 3    | 1.00075                       | 3   |
| 13               | 1.00067 | 7.1     | 1.00063                   | 3   | 1.00059                   | 4   | 1.00066                   | 3   | 1.00079                   | 3   | 1.00071            | 3    | 1.00064                       | 3   |
| 14               | 1.00075 | 14.0    | 1.00068                   | 4   | 1.00084                   | 4   | 1.00072                   | 3   | 1.00096                   | 3   | 1.00074            | 3    | 1.00055                       | 3   |
| 15               | 1.00072 | 7.3     | 1.00060                   | 4   | 1.00072                   | 3   | 1.00078                   | 3   | 1.00070                   | 3   | 1.00081            | 3    | 1.00071                       | 3   |
| 16               | 1.00072 | 9.5     | 1.00067                   | 4   | 1.00074                   | 3   | 1.00069                   | 3   | 1.00070                   | 3   | 1.00090            | 3    | 1.00063                       | 3   |
| 17               | 1.00065 | 13.7    | 1.00065                   | 4   | 1.00074                   | 3   | 1.00073                   | 3   | 1.00073                   | 3   | 1.00065            | 3    | 1.00038                       | 3   |
| 18               | 1.00065 | 6.7     | 1.00061                   | 4   | 1.00069                   | 3   | 1.00066                   | 3   | 1.00057                   | 3   | 1.00062            | 3    | 1.00076                       | 3   |
| 19               | 1.00079 | 6.3     | 1.00076                   | 4   | 1.00086                   | 3   | 1.00083                   | 3   | 1.00078                   | 3   | 1.00084            | 3    | 1.00069                       | 3   |
| 20               | 1.00081 | 7.0     | 1.00085                   | 4   | 1.00083                   | 3   | 1.00083                   | 3   | 1.00069                   | 3   | 1.00089            | 3    | 1.00077                       | 3   |
| Average          | 1.00074 | 10.2    | 1.00070                   | 6.8 | 1.00077                   | 6.8 | 1.00078                   | 9.3 | 1.00080                   | 9.8 | 1.00077            | 10.8 | 1.00065                       | 9.2 |
| pop. min         | 1.00038 | min     | 1.00060                   |     | 1.00059                   |     | 1.00063                   |     | 1.00057                   |     | 1.00054            |      | 1.00038                       |     |
| pop. max         | 1.00098 | max     | 1.00085                   |     | 1.00086                   |     | 1.00093                   |     | 1.00098                   |     | 1.00090            |      | 1.00077                       |     |
| max-min,<br>pcm: | 60      |         | 25                        |     | 27                        |     | 30                        |     | 41                        |     | 36                 |      | 39                            |     |

MCNP  $k_{calc}$  values and uncertainties for LEU-COMP-THERM-005.1. Results are for 20 independent jobs using one of the six kcode parameter strategies (100,000 histories/cycle, 50,000 histories/cycle, ..., 1000 histories/cycle) identified previously. Minimum and maximum  $k_{calc}$  values for each kcode parameter strategy a noted in **red** and **green**, respectively.

|                  |         |         | $k_{calc}$ and unc |      | $k_{calc}$ and unc |     | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      | $k_{calc}$ and unc |     | $\mathbf{k}_{calc}$ and unc |      |
|------------------|---------|---------|--------------------|------|--------------------|-----|--------------------|------|--------------------|------|--------------------|-----|-----------------------------|------|
| Job              | Average | Pop. SD | 100K               |      | 50K                |     | 20K                |      | 10K                |      | 5K                 |     | 1K                          |      |
| 1                | 1.00210 | 10.6    | 1.00202            | 11   | 1.00227            | 11  | 1.00202            | 11   | 1.00220            | 11   | 1.00205            | 11  | 1.00205                     | 11   |
| 2                | 1.00224 | 13.8    | 1.00222            | 11   | 1.00224            | 11  | 1.00228            | 11   | 1.00218            | 11   | 1.00206            | 11  | 1.00248                     | 11   |
| 3                | 1.00221 | 13.2    | 1.00238            | 11   | 1.00228            | 11  | 1.00219            | 11   | 1.00198            | 11   | 1.00219            | 11  | 1.00222                     | 11   |
| 4                | 1.00218 | 10.8    | 1.00201            | 10   | 1.00220            | 11  | 1.00230            | 11   | 1.00220            | 11   | 1.00227            | 11  | 1.00210                     | 11   |
| 5                | 1.00215 | 13.6    | 1.00202            | 11   | 1.00219            | 11  | 1.00240            | 11   | 1.00211            | 11   | 1.00205            | 11  | 1.00214                     | 11   |
| 6                | 1.00223 | 8.9     | 1.00226            | 11   | 1.00233            | 11  | 1.00217            | 11   | 1.00232            | 11   | 1.00218            | 11  | 1.00211                     | 11   |
| 7                | 1.00215 | 9.2     | 1.00225            | 11   | 1.00220            | 11  | 1.00219            | 11   | 1.00199            | 11   | 1.00215            | 11  | 1.00210                     | 11   |
| 8                | 1.00225 | 11.8    | 1.00227            | 10   | 1.00239            | 11  | 1.00234            | 11   | 1.00206            | 11   | 1.00223            | 11  | 1.00218                     | 11   |
| 9                | 1.00219 | 11.6    | 1.00229            | 11   | 1.00207            | 11  | 1.00219            | 11   | 1.00234            | 11   | 1.00221            | 11  | 1.00205                     | 11   |
| 10               | 1.00220 | 6.8     | 1.00222            | 11   | 1.00220            | 11  | 1.00221            | 11   | 1.00214            | 11   | 1.00232            | 11  | 1.00213                     | 11   |
| 11               | 1.00218 | 18.4    | 1.00200            | 11   | 1.00219            | 11  | 1.00228            | 11   | 1.00248            | 11   | 1.00214            | 11  | 1.00199                     | 11   |
| 12               | 1.00214 | 11.2    | 1.00224            | 11   | 1.00222            | 11  | 1.00213            | 11   | 1.00218            | 11   | 1.00214            | 11  | 1.00193                     | 11   |
| 13               | 1.00229 | 16.8    | 1.00246            | 11   | 1.00234            | 10  | 1.00201            | 11   | 1.00228            | 11   | 1.00245            | 11  | 1.00221                     | 11   |
| 14               | 1.00230 | 15.1    | 1.00212            | 11   | 1.00236            | 11  | 1.00225            | 11   | 1.00249            | 11   | 1.00215            | 11  | 1.00243                     | 11   |
| 15               | 1.00218 | 14.9    | 1.00227            | 11   | 1.00237            | 11  | 1.00209            | 11   | 1.00225            | 11   | 1.00215            | 11  | 1.00195                     | 11   |
| 16               | 1.00215 | 12.8    | 1.00197            | 11   | 1.00229            | 11  | 1.00207            | 11   | 1.00229            | 11   | 1.00216            | 11  | 1.00209                     | 11   |
| 17               | 1.00219 | 8.4     | 1.00231            | 11   | 1.00227            | 11  | 1.00211            | 11   | 1.00211            | 11   | 1.00215            | 11  | 1.00218                     | 11   |
| 18               | 1.00219 | 9.8     | 1.00229            | 11   | 1.00224            | 11  | 1.00212            | 11   | 1.00228            | 11   | 1.00217            | 11  | 1.00204                     | 11   |
| 19               | 1.00218 | 5.7     | 1.00222            | 11   | 1.00214            | 11  | 1.00210            | 11   | 1.00218            | 11   | 1.00226            | 11  | 1.00218                     | 11   |
| 20               | 1.00215 | 10.2    | 1.00211            | 11   | 1.00223            | 11  | 1.00201            | 11   | 1.00218            | 11   | 1.00209            | 11  | 1.00229                     | 11   |
| Average          | 1.00219 | 12.1    | 1.00220            | 13.7 | 1.00225            | 8.1 | 1.00217            | 11.1 | 1.00221            | 13.6 | 1.00218            | 9.6 | 1.00214                     | 14.0 |
| pop. min         | 1.00193 | min     | 1.00197            |      | 1.00207            |     | 1.00201            |      | 1.00198            |      | 1.00205            |     | 1.00193                     |      |
| pop. max         | 1.00249 | max     | 1.00246            |      | 1.00239            |     | 1.00240            |      | 1.00249            |      | 1.00245            |     | 1.00248                     |      |
| max-min,<br>pcm: | 56      |         | 49                 |      | 32                 |     | 39                 |      | 51                 |      | 40                 |     | 55                          |      |

MCNP  $k_{calc}$  values and uncertainties for LEU-COMP-THERM-005.12. Results are for 20 independent jobs using one of the six kcode parameter strategies (100,000 histories/cycle, 50,000 histories/cycle, ..., 1000 histories/cycle) identified previously. Minimum and maximum  $k_{calc}$  values for each kcode parameter strategy a noted in red and green, respectively.

|                  |         |         | $k_{calc}$ and unc |     | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      | k <sub>calc</sub> and unc |     | $k_{calc}$ and unc |      |
|------------------|---------|---------|--------------------|-----|--------------------|------|--------------------|------|--------------------|------|---------------------------|-----|--------------------|------|
| Job              | Average | Pop. SD | 100K               |     | 50K                |      | 20K                |      | 10K                |      | 5K                        |     | 1K                 |      |
| 1                | 1.00482 | 14.7    | 1.00504            | 10  | 1.00475            | 10   | 1.00475            | 10   | 1.00475            | 10   | 1.00495                   | 10  | 1.00465            | 10   |
| 2                | 1.00474 | 7.8     | 1.00473            | 10  | 1.00477            | 10   | 1.00482            | 10   | 1.00481            | 10   | 1.00466                   | 10  | 1.00463            | 10   |
| 3                | 1.00477 | 10.7    | 1.00475            | 10  | 1.00461            | 10   | 1.00475            | 10   | 1.00491            | 10   | 1.00486                   | 10  | 1.00471            | 10   |
| 4                | 1.00481 | 9.5     | 1.00488            | 9   | 1.00488            | 11   | 1.00473            | 10   | 1.00473            | 10   | 1.00493                   | 10  | 1.00472            | 10   |
| 5                | 1.00480 | 8.7     | 1.00493            | 10  | 1.00486            | 10   | 1.00473            | 10   | 1.00469            | 10   | 1.00478                   | 10  | 1.00480            | 10   |
| 6                | 1.00474 | 16.5    | 1.00497            | 10  | 1.00485            | 10   | 1.00478            | 10   | 1.00451            | 10   | 1.00470                   | 10  | 1.00462            | 10   |
| 7                | 1.00475 | 16.7    | 1.00474            | 11  | 1.00472            | 10   | 1.00469            | 10   | 1.00498            | 10   | 1.00487                   | 10  | 1.00449            | 10   |
| 8                | 1.00485 | 8.8     | 1.00487            | 11  | 1.00490            | 10   | 1.00479            | 10   | 1.00499            | 10   | 1.00477                   | 10  | 1.00477            | 10   |
| 9                | 1.00483 | 11.4    | 1.00478            | 10  | 1.00488            | 10   | 1.00476            | 10   | 1.00489            | 10   | 1.00498                   | 10  | 1.00466            | 10   |
| 10               | 1.00468 | 14.6    | 1.00477            | 10  | 1.00463            | 10   | 1.00462            | 10   | 1.00469            | 10   | 1.00489                   | 10  | 1.00446            | 10   |
| 11               | 1.00482 | 15.1    | 1.00475            | 11  | 1.00479            | 10   | 1.00483            | 10   | 1.00507            | 10   | 1.00485                   | 10  | 1.00461            | 10   |
| 12               | 1.00484 | 15.8    | 1.00479            | 10  | 1.00465            | 10   | 1.00508            | 10   | 1.00471            | 10   | 1.00484                   | 10  | 1.00495            | 10   |
| 13               | 1.00485 | 18.0    | 1.00478            | 10  | 1.00492            | 10   | 1.00515            | 10   | 1.00461            | 10   | 1.00478                   | 10  | 1.00486            | 10   |
| 14               | 1.00483 | 11.9    | 1.00480            | 10  | 1.00491            | 10   | 1.00481            | 10   | 1.00502            | 10   | 1.00473                   | 10  | 1.00470            | 10   |
| 15               | 1.00480 | 19.1    | 1.00473            | 10  | 1.00495            | 10   | 1.00492            | 10   | 1.00479            | 10   | 1.00496                   | 10  | 1.00446            | 10   |
| 16               | 1.00479 | 6.2     | 1.00481            | 10  | 1.00470            | 10   | 1.00473            | 10   | 1.00487            | 10   | 1.00482                   | 10  | 1.00479            | 10   |
| 17               | 1.00487 | 7.8     | 1.00481            | 10  | 1.00483            | 10   | 1.00491            | 10   | 1.00493            | 10   | 1.00497                   | 10  | 1.00477            | 10   |
| 18               | 1.00476 | 15.8    | 1.00492            | 10  | 1.00456            | 10   | 1.00458            | 10   | 1.00490            | 10   | 1.00484                   | 10  | 1.00478            | 10   |
| 19               | 1.00479 | 9.3     | 1.00474            | 10  | 1.00478            | 10   | 1.00492            | 11   | 1.00485            | 10   | 1.00481                   | 10  | 1.00465            | 10   |
| 20               | 1.00479 | 8.7     | 1.00482            | 10  | 1.00470            | 10   | 1.00489            | 10   | 1.00487            | 10   | 1.00478                   | 10  | 1.00468            | 10   |
| Average          | 1.00479 | 12.7    | 1.00482            | 8.7 | 1.00478            | 11.4 | 1.00481            | 13.8 | 1.00483            | 14.4 | 1.00484                   | 9.1 | 1.00469            | 12.7 |
| pop. min         | 1.00446 | min     | 1.00473            |     | 1.00456            |      | 1.00458            |      | 1.00451            |      | 1.00466                   |     | 1.00446            |      |
| pop. max         | 1.00515 | max     | 1.00504            |     | 1.00495            |      | 1.00515            |      | 1.00507            |      | 1.00498                   |     | 1.00495            |      |
| max-min,<br>pcm: | 69      |         | 31                 |     | 39                 |      | 57                 |      | 56                 |      | 32                        |     | 49                 |      |

MCNP  $k_{calc}$  values and uncertainties for LEU-COMP-THERM-007.1. Results are for 20 independent jobs using one of the six kcode parameter strategies (100,000 histories/cycle, 50,000 histories/cycle, ..., 1000 histories/cycle) identified previously. Minimum and maximum  $k_{calc}$  values for each kcode parameter strategy a noted in red and green, respectively.

|                  |         |         | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      | $k_{calc}$ and unc |     | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      |
|------------------|---------|---------|--------------------|------|--------------------|------|--------------------|-----|--------------------|------|--------------------|------|--------------------|------|
| Job              | Average | Pop. SD | 100K               |      | 50K                |      | 20K                |     | 10K                |      | 5K                 |      | 1K                 |      |
| 1                | 0.99664 | 11.4    | 0.99652            | 11   | 0.99654            | 11   | 0.99672            | 11  | 0.99665            | 11   | 0.99682            | 11   | 0.99660            | 11   |
| 2                | 0.99662 | 14.2    | 0.99661            | 12   | 0.99673            | 11   | 0.99653            | 11  | 0.99660            | 11   | 0.99681            | 11   | 0.99641            | 11   |
| 3                | 0.99664 | 21.5    | 0.99675            | 11   | 0.99680            | 11   | 0.99670            | 11  | 0.99636            | 11   | 0.99685            | 11   | 0.99638            | 11   |
| 4                | 0.99671 | 16.8    | 0.99668            | 12   | 0.99693            | 11   | 0.99661            | 11  | 0.99685            | 11   | 0.99672            | 11   | 0.99646            | 11   |
| 5                | 0.99663 | 13.0    | 0.99673            | 12   | 0.99644            | 11   | 0.99659            | 11  | 0.99670            | 11   | 0.99653            | 11   | 0.99678            | 11   |
| 6                | 0.99661 | 15.4    | 0.99650            | 11   | 0.99659            | 12   | 0.99662            | 11  | 0.99681            | 11   | 0.99676            | 11   | 0.99640            | 11   |
| 7                | 0.99658 | 11.4    | 0.99658            | 12   | 0.99672            | 12   | 0.99659            | 11  | 0.99654            | 11   | 0.99667            | 11   | 0.99639            | 11   |
| 8                | 0.99659 | 4.2     | 0.99659            | 12   | 0.99662            | 11   | 0.99662            | 11  | 0.99661            | 11   | 0.99658            | 11   | 0.99651            | 11   |
| 9                | 0.99672 | 6.2     | 0.99681            | 11   | 0.99676            | 11   | 0.99667            | 12  | 0.99674            | 11   | 0.99668            | 11   | 0.99665            | 11   |
| 10               | 0.99662 | 10.7    | 0.99662            | 11   | 0.99652            | 12   | 0.99665            | 11  | 0.99661            | 11   | 0.99650            | 11   | 0.99680            | 11   |
| 11               | 0.99668 | 11.7    | 0.99664            | 12   | 0.99657            | 11   | 0.99666            | 11  | 0.99676            | 11   | 0.99688            | 11   | 0.99659            | 11   |
| 12               | 0.99669 | 14.4    | 0.99672            | 11   | 0.99682            | 11   | 0.99683            | 11  | 0.99652            | 11   | 0.99650            | 11   | 0.99673            | 11   |
| 13               | 0.99674 | 20.0    | 0.99694            | 12   | 0.99664            | 12   | 0.99662            | 12  | 0.99704            | 11   | 0.99654            | 11   | 0.99666            | 11   |
| 14               | 0.99668 | 8.9     | 0.99680            | 11   | 0.99674            | 11   | 0.99669            | 11  | 0.99669            | 11   | 0.99661            | 11   | 0.99655            | 11   |
| 15               | 0.99670 | 20.5    | 0.99693            | 12   | 0.99673            | 11   | 0.99662            | 11  | 0.99678            | 11   | 0.99682            | 11   | 0.99634            | 11   |
| 16               | 0.99668 | 12.7    | 0.99673            | 12   | 0.99681            | 12   | 0.99656            | 11  | 0.99654            | 11   | 0.99682            | 11   | 0.99659            | 11   |
| 17               | 0.99674 | 8.3     | 0.99682            | 12   | 0.99682            | 12   | 0.99680            | 11  | 0.99666            | 11   | 0.99667            | 11   | 0.99666            | 11   |
| 18               | 0.99662 | 12.2    | 0.99667            | 11   | 0.99681            | 12   | 0.99665            | 11  | 0.99647            | 11   | 0.99651            | 11   | 0.99659            | 11   |
| 19               | 0.99663 | 16.4    | 0.99682            | 11   | 0.99646            | 11   | 0.99673            | 11  | 0.99670            | 11   | 0.99666            | 11   | 0.99640            | 11   |
| 20               | 0.99664 | 11.3    | 0.99671            | 11   | 0.99653            | 11   | 0.99655            | 11  | 0.99656            | 11   | 0.99682            | 11   | 0.99664            | 11   |
| Average          | 0.99666 | 13.5    | 0.99671            | 12.2 | 0.99668            | 13.9 | 0.99665            | 7.8 | 0.99666            | 15.1 | 0.99669            | 13.0 | 0.99656            | 13.9 |
| pop. min         | 0.99634 | min     | 0.99650            |      | 0.99644            |      | 0.99653            |     | 0.99636            |      | 0.99650            |      | 0.99634            |      |
| pop. max         | 0.99704 | max     | 0.99694            |      | 0.99693            |      | 0.99683            |     | 0.99704            |      | 0.99688            |      | 0.99680            |      |
| max-min,<br>pcm: | 70      |         | 44                 |      | 49                 |      | 30                 |     | 68                 |      | 38                 |      | 46                 |      |

MCNP  $k_{calc}$  values and uncertainties for LEU-COMP-THERM-007.4. Results are for 20 independent jobs using one of the six kcode parameter strategies (100,000 histories/cycle, 50,000 histories/cycle, ..., 1000 histories/cycle) identified previously. Minimum and maximum  $k_{calc}$  values for each kcode parameter strategy a noted in **red** and **green**, respectively.

|                  |         |         | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      | k <sub>calc</sub> and unc |     | $k_{calc}$ and unc |     | $k_{calc}$ and unc |      | $k_{calc}$ and unc |      |
|------------------|---------|---------|--------------------|------|--------------------|------|---------------------------|-----|--------------------|-----|--------------------|------|--------------------|------|
| Job              | Average | Pop. SD | 100K               |      | 50K                |      | 20К                       |     | 10K                |     | 5K                 |      | 1K                 |      |
| 1                | 0.99857 | 8.8     | 0.99867            | 9    | 0.99866            | 9    | 0.99850                   | 9   | 0.99846            | 9   | 0.99862            | 9    | 0.99853            | 9    |
| 2                | 0.99856 | 20.8    | 0.99885            | 9    | 0.99840            | 9    | 0.99834                   | 9   | 0.99862            | 9   | 0.99873            | 9    | 0.99840            | 9    |
| 3                | 0.99856 | 15.1    | 0.99867            | 8    | 0.99864            | 9    | 0.99876                   | 9   | 0.99843            | 9   | 0.99837            | 9    | 0.99851            | 9    |
| 4                | 0.99855 | 11.9    | 0.99837            | 9    | 0.99861            | 9    | 0.99847                   | 9   | 0.99850            | 9   | 0.99867            | 9    | 0.99866            | 9    |
| 5                | 0.99854 | 5.2     | 0.99859            | 9    | 0.99848            | 9    | 0.99851                   | 9   | 0.99852            | 9   | 0.99861            | 9    | 0.99850            | 9    |
| 6                | 0.99860 | 5.6     | 0.99853            | 8    | 0.99866            | 9    | 0.99863                   | 9   | 0.99857            | 9   | 0.99856            | 9    | 0.99866            | 9    |
| 7                | 0.99848 | 12.5    | 0.99850            | 9    | 0.99852            | 9    | 0.99840                   | 9   | 0.99865            | 9   | 0.99851            | 9    | 0.99828            | 9    |
| 8                | 0.99847 | 6.2     | 0.99845            | 9    | 0.99851            | 9    | 0.99856                   | 9   | 0.99841            | 9   | 0.99840            | 9    | 0.99849            | 9    |
| 9                | 0.99858 | 10.1    | 0.99854            | 9    | 0.99851            | 9    | 0.99853                   | 9   | 0.99849            | 9   | 0.99870            | 9    | 0.99872            | 9    |
| 10               | 0.99855 | 11.5    | 0.99875            | 9    | 0.99847            | 9    | 0.99861                   | 9   | 0.99856            | 9   | 0.99847            | 9    | 0.99845            | 9    |
| 11               | 0.99849 | 17.2    | 0.99827            | 9    | 0.99854            | 9    | 0.99859                   | 9   | 0.99863            | 9   | 0.99828            | 9    | 0.99864            | 9    |
| 12               | 0.99861 | 10.2    | 0.99861            | 9    | 0.99877            | 9    | 0.99862                   | 9   | 0.99848            | 9   | 0.99864            | 9    | 0.99852            | 9    |
| 13               | 0.99858 | 5.8     | 0.99867            | 9    | 0.99854            | 9    | 0.99858                   | 9   | 0.99856            | 9   | 0.99850            | 9    | 0.99860            | 9    |
| 14               | 0.99855 | 11.4    | 0.99852            | 9    | 0.99845            | 9    | 0.99859                   | 9   | 0.99875            | 9   | 0.99844            | 9    | 0.99857            | 9    |
| 15               | 0.99855 | 10.4    | 0.99858            | 9    | 0.99857            | 9    | 0.99852                   | 9   | 0.99837            | 9   | 0.99860            | 9    | 0.99868            | 9    |
| 16               | 0.99853 | 9.5     | 0.99857            | 9    | 0.99864            | 9    | 0.99857                   | 9   | 0.99850            | 9   | 0.99855            | 9    | 0.99836            | 9    |
| 17               | 0.99857 | 12.4    | 0.99869            | 9    | 0.99865            | 9    | 0.99851                   | 9   | 0.99838            | 9   | 0.99850            | 9    | 0.99868            | 9    |
| 18               | 0.99861 | 11.6    | 0.99855            | 9    | 0.99883            | 9    | 0.99852                   | 9   | 0.99862            | 9   | 0.99853            | 9    | 0.99858            | 9    |
| 19               | 0.99853 | 9.2     | 0.99846            | 9    | 0.99864            | 9    | 0.99860                   | 9   | 0.99845            | 9   | 0.99861            | 9    | 0.99844            | 9    |
| 20               | 0.99861 | 5.6     | 0.99867            | 9    | 0.99858            | 9    | 0.99864                   | 9   | 0.99853            | 9   | 0.99866            | 9    | 0.99857            | 9    |
| Average          | 0.99855 | 11.0    | 0.99858            | 13.2 | 0.99858            | 10.7 | 0.99855                   | 9.0 | 0.99852            | 9.8 | 0.99855            | 11.6 | 0.99854            | 11.7 |
| pop. min         | 0.99827 | min     | 0.99827            |      | 0.99840            |      | 0.99834                   |     | 0.99837            |     | 0.99828            |      | 0.99828            |      |
| pop. max         | 0.99885 | max     | 0.99885            |      | 0.99883            |      | 0.99876                   |     | 0.99875            |     | 0.99873            |      | 0.99872            |      |
| max-min,<br>pcm: | 58      |         | 58                 |      | 43                 |      | 42                        |     | 38                 |     | 45                 |      | 44                 |      |