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Reaction mechanisms involving weakly bound 6Li and 209Bi at energies near the Coulomb barrier
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The elastic, inelastic, and transfer cross sections are measured for the 6Li + 209Bi reaction at energies around
the Coulomb barrier. The optical model analysis of elastic scattering shows a breakup threshold anomaly in
the energy dependence of the real and imaginary potentials. The observed energy dependence is found to be
consistent with the dynamic polarization potential obtained from the coupled-channels calculations that explain
the above measured reaction channels simultaneously. A comparison of different reaction probabilities reveals
that the relative contribution of breakup starts increasing at energies below the Coulomb barrier, in contrast to
the behavior of other reaction channels, which get closed as energy is lowered. The large probability of projectile
breakup at sub-Coulomb energies leads to the observation of a nonzero imaginary potential even at Elab � 0.8VB .
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I. INTRODUCTION

The effect of coupling between the relative motion and
the intrinsic degrees of freedom of the participating nuclei
is manifested as a “threshold anomaly” in the energy-
dependence behavior of the real part of the effective in-
teraction potential [1]. Although this behavior is observed
for most of the reactions involving strongly bound stable
projectiles, for example, 12C + 208Pb,209Bi [2,3], it may
not be true for the reactions involving loosely bound pro-
jectiles with large breakup probability, for example, 6Li +
208Pb [4], 6Li + 138Ba [5], 6Li + 59Co [6], 6Li + 28Si [7],
9Be + 209Bi [8], and 9Be + 64Zn [9,10]. For the latter systems,
there is no pronounced energy dependence of the real potential,
and at energies below the Coulomb barrier the imaginary
potential is found to remain constant or sometimes increases
with decreasing energy. The increase in the imaginary potential
below the Coulomb barrier is sometimes associated with a
slight decrease in the real potential. Hussein et al. have showed
that this behavior is a new manifestation of the dispersion
relation and named it the “breakup threshold anomaly” [11].

Though no threshold anomaly is observed in many reactions
involving 6Li and 9Be [4–10], it still exists for 7Li [4–7].
Since breakup thresholds of 6Li (Eαd = 1.48 MeV) and 9Be
(Eααn = 1.57 MeV) are similar and lower than that of 7Li
(Eαt = 2.47 MeV), it can be understood that the large breakup
probabilities of 6Li and 9Be may be affecting the traditional
energy dependence of the real potential. In addition to the
larger breakup threshold (2.47 MeV) of 7Li, it has a bound
excited state at 0.478 MeV, which is much lower than its
breakup threshold. The effect of coupling of this inelastic
state to elastic scattering may still be manifested in the
optical model (OM) potential as the normal threshold anomaly.
However, contradictory results exist involving same weakly
bound projectiles: e.g., Signorini et al. did not observe any
threshold anomaly for 9Be + 209Bi [8], while Woolliscroft et al.
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saw a pronounced threshold anomaly for a very similar system,
9Be + 208Pb [12]. This implies that a clear understanding of
the effect of breakup on the energy dependence of the optical
potential is still elusive. Systematic studies of more reactions
involving weakly bound projectiles are necessary to unfold
these effects.

Since the breakup is one of the reaction channels, its
coupling with the elastic channel may lead to enhancement
of complete fusion (CF), exhibiting the threshold anomaly.
Alternatively, the breakup of the projectile before reaching
the fusion barrier will lead to loss of flux and hence the CF
should be reduced [13]. Thus the coupling mechanism will be
best understood when the same set of potential parameters are
used in the coupled-channels calculations to understand both
the elastic and the fusion data simultaneously. In addition,
if the couplings and potential parameters are unique then
coupled-channels (CC) calculations are expected to reproduce
the cross sections for other nonelastic channels too. This
is a challenging task because one needs (i) to measure the
cross sections for all the above channels and (ii) to find a
unique parameter set that describes them through the same CC
calculations.

Since both the CF and ICF (incomplete fusion) cross
sections for the 6Li + 209Bi system at energies around the
Coulomb barrier, VB � 30 MeV (in the center of mass), are
available in the literature [14], we chose this reaction for the
present study. To have a complete set of data, we decided to
measure the elastic, inelastic, and transfer cross sections for the
same system. Earlier we have already measured the exclusive
breakup of 6Li → α + d at Elab = 36 and 40 MeV for the
above system [15]; this will act as an additional constraint in
the coupled-channels calculations. In a very recent work by A.
Gomez Camacho et al. on 6,7Li + 28Si [16], a simultaneous
description of the elastic, fusion, and reaction cross sections
has been made, where the nuclear polarization potential is
split into a volume part and a surface part to understand the
energy dependence of the OM potential in terms of different
polarization potentials. It would be interesting to see whether
a simultaneous description of all the channels as well as the
energy dependence of the OM potential is possible for the
present system (6Li + 209Bi) through the same CC calculations
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with a large amount of experimental data for inelastic, transfer,
and fusion channels as constraints. It would also be interesting
to compare the probabilities of different reaction channels
involved in the present reaction and understand the effect of
projectile breakup on elastic and fusion cross sections.

In this paper, we present the results of the measurements
and analysis of elastic, inelastic, and transfer cross sections
for the 6Li + 209Bi system. Details of the measurements are
given in Sec. II. The optical model data analysis of elastic
scattering, the coupled-channels calculations, and the results
are discussed in Sec. III. Finally, the results are summarized
in Sec. IV.

II. MEASUREMENTS

The experiment was performed using a 6Li beam from the
BARC-TIFR 14-UD pelletron facility in Mumbai. The self-
supporting target (209Bi), with a thickness of ∼330 µg/cm2,
was prepared by the vacuum evaporation technique. Four
�E-E telescopes of Si surface barrier detectors were placed
10◦ apart on a movable arm inside a 1-m-diameter scattering
chamber to catch the projectile-like fragments. Each telescope,
with a 5-mm-diameter collimator, has an angular opening of
±0.5◦. The telescopes, with detector thicknesses of �E = 25–
33 µm and E = 500–1000 µm, were suitable for detection of
particles with Z = 1, 2, and 3. Two monitors of single-surface
barrier detectors of 2000 µm thickness were placed at ±25◦
on either side of the beam for cross-section normalization and
beam monitoring.

A typical two-dimensional spectrum and the one-
dimensional projections for 7Li and 6Li particles detected by
a telescope at θlab = 100◦ for Ebeam = 38 MeV are shown in
Fig. 1. A one-dimensional projection of 7Li corresponding to
the 1n pickup channel is shown in Fig. 1(b). The 7Li1 peak
corresponds to the ground state of 7Li and the ground state plus
first excited state (0.063 MeV) of 208Bi. 7Li2 corresponds to the
ground state of 7Li with the second excited state (0.51 MeV)
of 208Bi and the ground state of 208Bi with the first excited
state (0.478 MeV) of 7Li. 7Li3 represents the first excited state
(0.478 MeV) of 7Li and the second excited state (0.51 MeV) of
208Bi. Yields under only the 7Li1 peak were extracted and used
for determining the cross sections and compared with the CC
calculations. The elastic and target inelastic states (∼2.6 MeV)
corresponding to 208Pb(3−)

⊗
πh9/2 are clearly separated as

shown in Fig. 1(c).
The elastic scattering angular distributions, measured in the

angular range of θlab = 20◦–173◦ at beam energies of Elab =
24, 26, 28, 30, 32, 34, 36, 38, 40, and 50 MeV, including the
data from Refs. [17,18] at 32.8 and 44 MeV, are shown in
Fig. 2.

III. ANALYSIS AND DISCUSSION

A. Optical model analysis of elastic scattering

The measured elastic scattering angular distributions along
with the data available in the literature [17,18] were analyzed
by the optical model with a microscopic real potential [19],
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FIG. 1. (Color online) (a) A typical two-dimensional spectrum of
�E vs Etotal for 6Li + 209Bi measured by a telescope at θlab = 100◦

for Ebeam = 38 MeV. Also shown are the one-dimensional projections
for (b) 7Li and (c) 6Li. In (b), the 7Li1 peak corresponds to the ground
state of 7Li and the ground state plus first excited state of 208Bi. 7Li2

and 7Li3 represent higher excited states of 7Li and/or 208Bi.

following the formalism described in Refs. [2,3]. The double-
folded microscopic real potential VF was calculated as

VF =
∫ ∫

dr1dr2ρ(r1)ρ(r2)v(r12), (1)

where r is the separation of the centers of mass of the two
colliding nuclei, v is the effective nucleon-nucleon interaction,
and the ρ’s are point nucleon densities of 6Li and 208Pb. The
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FIG. 2. (Color online) The elastic scattering angular distributions
for 6Li + 209Bi at energies Elab = 24–50 MeV, including the data
from Refs. [17,18] at 32.8 and 44 MeV. Solid lines are the OM fit
using the microscopic potential. Dashed (dotted) lines correspond to
the CC calculations with full (no) couplings.

potentials were computed using the code DFPOT [20]. The
interaction used was of the M3Y form [19], given by

v(r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
+ J00δ(r), (2)

where the third term accounts for knock-on exchange with
J00 = −265 MeV fm3. The charge density distribution is ob-
tained by fitting the electron scattering data and is parametrized
in the Fermi parabolic form [21],

ρ(r) = ρ0(1 + wr2/c2)

1 + exp
(

r−c
a

) . (3)

The parameters used for the charge densities of 209Bi (6Li)
are c = 6.75 (1.8736) fm, a = 0.468 (0.7533) fm, and w =
0 (−0.0236). The ρ0 values were chosen so as to normalize
the distribution to their respective charge numbers. The point
nucleon densities were obtained from the charge densities after
correcting for the finite size of the proton in the standard way

[19], using the root-mean-square values of the radii, 〈r2〉 1
2 =

2.56 and 5.51 fm, of 6Li and 209Bi, respectively.
The potential used to carry out the fits to the elastic

scattering data was of the form

U (r) = −λVF (r) − iW (r) + Vc(r). (4)

The VF potential was allowed an overall adjustable normal-
ization coefficient λ to fit the elastic data at different energies.
The imaginary part of optical potential was of Woods-Saxon
form with its depth W0, diffuseness aw, and radius parameter
rw. The Coulomb potential, Vc(r, rc), was taken as that due
to a uniformly charged sphere of radius Rc = rc(A1/3

P + A
1/3
T )

with rc fixed at 1.2 fm.
The best fits to the elastic scattering data were obtained by

varying the parameters λ, W0, and aw. The radius parameter
rw was kept fixed at 1.2 fm. The resulting OM fits are shown
as solid lines in Fig. 2. The parameters obtained from the fits
to the experimental elastic scattering data at various energies
are given in Table I. The errors on λ and W0 are obtained by
varying these parameters on either side of the best-fit values.
The quoted errors are equal to the differences between the
best-fit parameters (with minimum χ2) and the values of the
parameters where χ2 increases by 15% above the minimum.

By using the best-fit parameters obtained from microscopic
OM analysis, the real and imaginary potentials are calculated
at the average strong absorption radius, Rsa = 12.4 fm. The
strong absorption radius, at any energy, was computed from the
formula for the distance of closest approach for the Coulomb
trajectories, i.e.,

Rsa = η

k

[
1 +

(
1 +

(
L 1

2

η

)2) 1
2
]
. (5)

Here, k is the wave number, η is the Sommerfeld parameter, and
L 1

2
is the partial wave for which the transmission coefficient is

0.5, at the above energy. The mean value for Rsa was estimated
to be 12.4 fm. By using the data from Table I the values of the
real and the imaginary potentials are calculated at r = 12.4 fm
and plotted as a function of bombarding energy in Fig. 3.

TABLE I. Optical model (microscopic) parameters from elastic
scattering analysis. rw was kept fixed at 1.2 fm.

Elab (MeV) λ W0 (MeV) aw (fm) σreac (mb)

24 0.63 ± 1.38 29.77 ± 7.5 0.912 14.4
26 0.63 ± 0.51 48.44 ± 6.7 0.749 37.1
28 0.64 ± 0.16 28.59 ± 2.4 0.746 81
30 0.53 ± 0.05 35.92 ± 1.8 0.746 246
32 0.60 ± 0.03 37.92 ± 1.5 0.737 469
32.8 0.53 ± 0.05 31.62 ± 1.7 0.746 528
34 0.54 ± 0.02 26.74 ± 4.7 0.701 567
36 0.46 ± 0.03 39.42 ± 2.6 0.741 910
38 0.49 ± 0.02 27.44 ± 1.3 0.741 1015
40 0.60 ± 0.02 37.67 ± 2.5 0.700 1213
44 0.64 ± 0.02 32.79 ± 2.7 0.773 1608
50 0.68 ± 0.05 47.28 ± 7.6 0.700 1924
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FIG. 3. (Color online) (a) The real and (b) the imaginary
potentials (hollow circles) obtained from the OM analysis at strong
absorption radius, Rsa = 12.4 fm. The solid lines are obtained from
the dispersion relation. Results from the CC calculations for the
real (imaginary) part of the bare potential Vbare (Wbare), dynamic
polarization potential �Vp (�Wp), and effective potential, Veff =
�Vp + Vbare (Weff = �Wp + Wbare) are represented by short-dashed,
medium-dashed, and dash-dotted lines, respectively.

The consistency between the real and the imaginary
potentials (solid lines) was tested by a dispersion relation
[22]. The imaginary part of the potential is represented in
the form of three straight-line segments, as shown as solid
lines in Fig. 3(b). The corresponding real part of the potential
calculated from the dispersion relation is shown by a solid
line in Fig. 3(a). From this it can be concluded that there is
no pronounced energy dependence or “threshold anomaly”
of the real potential (hollow circles) at energies around the
Coulomb barrier, similar to the observations made earlier
[4–6,8,10] for the reactions involving weakly bound 6Li and
9Be projectiles. As we go down in energy below the Coulomb
barrier, the imaginary potential starts increasing (typical of the
breakup threshold anomaly) and it does not vanish even at
Elab � 0.8VB , indicating the presence of some open reaction
channels.

To see the sensitivity of the imaginary potential at sub-
barrier energies, the elastic scattering cross sections were
calculated using different values of W0. The results are shown
in Figs. 4(a) and 4(b) for the two lowest energies, Elab = 24 and
26 MeV, respectively. A comparison of the calculations with
the best-fit imaginary potentials (solid lines) to the ones with
W0 = 0 (dash-dot lines) and an intermediate value (dashed
lines) brings out the importance of using a nonzero imaginary
potential to explain the elastic data at sub-barrier energies. A
grid search on the radius and diffuseness parameters has been
made to determine their sensitivities on the uncertainties on
the imaginary potential. It was observed that aw is sensitive
even at the lowest energies. This finding is in contrast to the
observation of Keeley et al. [4]. However, rw was found to
be less sensitive when compared to aw and has a dominant
contribution to the uncertainties on W .
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FIG. 4. (Color online) The elastic scattering calculated with
different values of imaginary potential compared with the measured
data to see the sensitivity. The solid line represents the best-fit values;
the dash-dot and dashed lines correspond to the calculations with
W0 = 0 and an intermediate value, respectively.

B. Coupled-channels calculations and discussion

The continuum discretized coupled-channels (CDCC)
method was employed using the code FRESCO [23] to calculate
the cross sections for elastic and breakup channels and
understand the energy dependence of the optical potentials.
6Li was taken as a cluster of α + d for its bound as well as
continuum (resonant and nonresonant) states. The breakup of
the projectile into its fragments (α and d) is considered to
be caused by inelastic excitations to different partial waves
in the continuum, induced by the projectile fragments–target
interactions due to Coulomb as well as nuclear forces.

The couplings that are included in the present calculations
are similar to the ones described in our earlier paper [15].
For 6Li, couplings to the 3+ (Ex = 2.18 MeV), 2+ (Ex =
4.31 MeV), and 1+ (Ex = 5.65 MeV) resonant states as well
as couplings to the nonresonant continuum were included.
The continuum up to an excitation energy of 8 MeV with
α-d relative momentum values L = 0, 1, and 2 were included
in the coupling. For s and p waves, the continuum was
discretized into 16 bins of equal width in the momentum
of α-d relative motion. Three resonant states, with widths
corresponding to 0.1, 2.0, and 3.0 MeV, respectively, were also
treated as momentum bins, but with finer steps. In the presence
of resonances for d waves, the discretization of the continuum
was slightly modified in order to avoid double counting.

The couplings of the ground state to the continuum as well
as continuum to continuum have been included. Reorientation
coupling, i.e., the coupling of the quadrupole term of the
projectile fragment–target potentials, was also incorporated.
Since the inelastic cross section corresponding to the target
excitation was found to be small, and the effect of its coupling
on the elastic is known to be insignificant [24], no target
excitation was included in the CDCC calculations.
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The CDCC calculations were performed using the cluster-
folded interaction [25], where α-target (Vα+Bi) and deuteron-
target (Vd+Bi) optical potentials were evaluated at Eα ≈ 2

3E6Li

and Ed ≈ 1
3E6Li, respectively. Once a certain set of potential

parameters for Vα+Bi and Vd+Bi is chosen, there are no free
parameters remaining in the model, except a possible overall
renormalization factor [26]. The Vα+Bi potential used in our
calculations was taken from Ref. [27] for Elab = 24.8 MeV.
Both the real and the imaginary potentials were of Woods-
Saxon volume form and the parameters are as follows: v0 =
107.4 MeV, r0 = 1.361 fm, a0 = 0.578 fm, w = 13.5 MeV,
rw = 1.412 fm, and aw = 0.299 fm. Similarly, the Vd+Bi

potential, with real parameters v0 = 100.2 MeV, r0 = 1.15 fm,
and a0 = 0.973 fm and imaginary parameters w = 15.37 MeV,
rw = 1.45 fm, and aw = 0.559 fm, were taken to be the same as
that of d+208Pb at 12 MeV [28]. The imaginary parts of Vα+Bi

and Vd+Bi describe the removal of flux whenever the individual
fragments themselves break up, excite, or fuse with the target.
The strengths of the real part of Vα+Bi as well as Vd+Bi have
been adjusted by a scale factor of 0.8 to 1.0 compared to the
values in Refs. [27,28] in order to explain the elastic data in
the measured energy range of 24–50 MeV.

Results of the CDCC calculations with full (no) couplings
for elastic scattering at all the measured energies (Elab = 24–
50 MeV) are shown as dashed (dotted) lines in Fig. 2. It can be
seen that the coupling of the breakup channels has a significant
effect on elastic scattering. The effect of coupling of breakup
channels with relative angular momentum L = 2 on elastic
scattering is found to be the most dominant over the entire
energy range, consistent with the observations made by Kelly
et al. for the 6Li + 208Pb system [29]. The increase in elastic
cross section at backward angles with breakup couplings
implies that the real dynamic polarization potential (DPP)
generated by these couplings must be repulsive in nature. The
mean component of the DPP generated due to the couplings
was calculated using FRESCO as described in Ref. [30] and its
behavior around the surface region (11–15 fm) is shown in
Fig. 5. At the strong absorption radius (Rsa = 12.4 fm) and
around the surface region, the real part of the DPP, i.e., �Vp,
is indeed found to be highly repulsive (+ve) and the imaginary
part of the DPP, i.e., �Wp, is attractive (−ve).

In Fig. 3, the average polarization potential (medium dashed
line) along with the bare potential (short dashed line) is
compared with the OM potential obtained from the elastic
scattering fit. The real part of the polarization potential �Vp

calculated at r = 12.4 fm was found to be positive at all the
energies. It can be observed that the sum of the bare potential
and the DPP, represented by the dash-dotted lines, reproduces
the trend of experimental values (hollow circles) of both real
and imaginary potentials. One can observe the trend of the
imaginary part of the polarization potential particularly at
energies below the barrier, where it becomes more and more
attractive as we go down in energy and explains the energy
dependence of the OM potential at this region.

C. Target inelastic and transfer channels

To see the effect of target inelastic states and trans-
fer channels, coupled reaction channels (CRC) calculations

∆V
p(

r)
 (

M
eV

)

1

2

3

4

30 MeV
40 MeV
24 MeV

r(fm)
11 12 13 14

∆W
p(

r)
 (

M
eV

)

-0.6

-0.4

-0.2

0.0

Rsa

FIG. 5. (Color online) (a) Real part of the dynamic polarization
potential �Vp around the strong absorption radius obtained from the
coupled-channels calculations, using a cluster-folded potential, for
24 MeV (dash-dot line), 30 MeV (solid line), and 40 MeV (dashed
line). (b) Same as (a) but for the imaginary potential.

are performed using the CDCC-derived effective potentials
(�Vp + Vbare and �Wp + Wbare, which includes the effect
of projectile breakup) for the entrance channel. Similar to
Ref. [3], we have coupled (i) 17 inelastic states corresponding
to the multiplets of 208Pb(3− and 5−)

⊗
πh9/2 and (ii) transfer

couplings that include only low-lying excited states of the
outgoing transfer partitions with six channels for 1-n pickup
(7Li + 208Bi) and two channels each for 1-n stripping
(5Li + 210Bi) and 1-p stripping (5He + 210Po) reactions. All
the nonelastic channels are coupled to the entrance channel
only. The inelastic states were treated as collective vibrational
states and their form factors were chosen to be the derivatives
of the potentials. The β values [31] and the deformation lengths
are the same as those used in Ref. [3]. Reduced deformation
lengths (Coulomb and nuclear) were calculated and used for
each possible transition corresponding to the same collective
vibrational states.

For transfer partitions, the real potentials were calculated
using the semiemperical parametrization of folding model
potentials given by Broglia and Winther [32]:

Un(r) = −31.67
R(A1)R(A2)

R(A1) + R(A2)

×
[

1 + exp

(
r − R(A1, A2)

a

)]−1

MeV, (6)

where R(A) = 1.233A
1
3 − 0.98A− 1

3 fm and R(A1, A2) =
R(A1) + R(A2) + �R fm with the diffuseness parameter set
to a = 0.63 fm and the free parameter �R = 0.2 fm. The
imaginary potential for the transfer channels were of Woods-
Saxon squared form with a depth of 50 MeV, a radius parameter
of 1.0 fm, and a diffuseness parameter of 0.4 fm. The potentials
binding the transferred particles were of Woods-Saxon form,
with radius 1.2A

1
3 fm and diffuseness 0.6 fm, their depths being
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FIG. 6. Measured cross sections along with the CRC calculations
for the target inelastic state (2.6 MeV) at Ebeam = (a) 32 and
(b) 38 MeV. Cross sections for transfer reaction (6Li,7Li) at these
energies are shown in (c) and (d), respectively (see text for details).

automatically adjusted to obtain the required binding energies.
Spectroscopic factors are taken from the literature [3,33].

Typical results for inelastic states corresponding to
208Pb(3−)

⊗
πh9/2 multiplets are compared with present data

at 32 and 38 MeV in Figs. 6(a) and 6(b), respectively. Results
for the transfer reaction 209Bi(6Li,7Li) corresponding to ground
state of 7Li and the ground state plus first excited state of 208Bi
are compared with the present data in Figs. 6(c) and 6(d).
A reasonable description of the above data along with elastic
scattering ensures that the potential parameters used for CDCC
calculations are not arbitrary rather they are highly restricted
by the measured inelastic and transfer angular distributions.
The effect of coupling of target inelastic states and transfer
reactions on elastic scattering was found to be insignificant.
So, the repulsive DPP generated in CDCC calculations due to
breakup coupling seems to be the main reason for the absence
of a normal threshold anomaly in the present system.

D. Fusion and reaction cross sections

In Fig. 7 we have compared the fusion cross sections
calculated from the above CDCC calculations with the cross
section data for CF (stars) [14], CF + ICF (thin “X”)
[14], and the total reaction (σR) obtained from the OM fit
(hollow circles). Two methods were employed to calculate
the fusion cross sections using the FRESCO code. The solid
line corresponds to the results from the barrier penetration
model (BPM) using the incoming wave boundary condition
as done by Rusek et al. [34]; the dashed line represents the
fusion simulated by cumulative absorption in a long-ranged
imaginary potential. At energies above the Coulomb barrier,
it is observed that the BPM fusion matches very well with the

E
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FIG. 7. (Color online) Fusion cross sections obtained from
FRESCO by cumulative absorption (dashed line) and by barrier
penetration model (solid line) compared with TF and CF data along
with the OM-derived σR .

total fusion (TF = CF + ICF). But the CF data are found to
be smaller by ∼30%–40%, which is in agreement with the
conclusions drawn in Ref. [14]. However, at low energies,
the CF data compare well with the calculated BPM fusion
and show no suppression. Keeley et al. [35] have argued that
it is not clear whether the fusion from the BPM should be
compared with CF or TF. Since BPM assumes that all the flux
that penetrates the Coulomb barrier, defined by the real part
of the OM potential, leads to fusion, it may have contributions
from both CF as well as ICF, and hence it may lead to higher
BPM fusion than CF. However, this argument is not consistent
with the observed behavior at low energies.

In a second method, the TF cross section is simulated by the
cumulative absorption due to the long-ranged imaginary poten-
tial used in CDCC calculations. The total fusion thus predicted
(dashed line) was found to overestimate the experimental
data (denoted as “X”) [14]. However, a good reproduction of
elastic scattering data by the same CDCC calculations implies
that the additional flux absorbed by the imaginary potential
(σabs − σTF) must be equivalent to the sum of reaction cross
sections of target-inelastic and transfer channels that are not
included in the CDCC calculations.

E. Energy dependence of reaction channels

To find the relative contribution of the breakup channels
to the total reaction cross section particularly at sub-Coulomb
energies, the ratios of cross sections for breakup, CF, target
inelastic, and transfer channels to σR are plotted as a function
of energy in Fig. 8. At sub-barrier energies, it was interesting
to observe that with decreasing energy, the CDCC calculated
noncapture breakup cross section (solid line) increases, in
contrast to the behavior of CF (stars), inelastic (dash-dot-dot
line), and transfer (dashed line) cross sections. The transfer

034616-6



REACTION MECHANISMS INVOLVING WEAKLY BOUND . . . PHYSICAL REVIEW C 83, 034616 (2011)

Elab (MeV)

25 30 35 40 45 50

σ/
σ R

10-4

10-3

10-2

10-1

100

σCF/σR

Total α+d break. (CDCC)/σR

Trans.(7Li+5Li+5He)(CRC)/σR

Inelastic (CRC)/σR

FIG. 8. (Color online) The ratios of cross sections for CF (σCF)
data, calculated exclusive α + d breakup (σ excl), target inelastic
(σ inel), and transfer (σ tr) channels to total reaction cross section (σR)
to show their relative contributions at different energies.

cross section represents the sum of the cross sections calculated
for (6Li,7Li), (6Li,5Li), and (6Li,5He) channels. The above
observation implies that when all the other channels start
closing at sub-barrier energies, the breakup channel does not
close, possibly due to the small breakup threshold energy
of 6Li, and the breakup can be caused by even Coulomb
excitation. Thus it explains why the imaginary part of the
optical potential does not vanish even much below the
Coulomb barrier.

IV. SUMMARY AND CONCLUSIONS

In summary, the cross sections for elastic, inelastic, and
transfer for the 6Li + 209Bi reaction have been measured at
several energies around the Coulomb barrier. The conventional

threshold anomaly was not observed in the energy dependence
of the real potential obtained from the OM analysis. The
imaginary part of the optical potential was observed to increase
with decreasing energy below the Coulomb barrier. The
bare plus polarization potential calculated from the CDCC
calculations reproduces the trend of the energy dependence
of both the real and imaginary potentials. The inelastic and
transfer data that are explained simultaneously constrain the
parameters used in the calculations.

The fusion cross section calculated by the BPM method
reproduces the experimental total fusion (CF + ICF) at above
barrier energies but underpredict it at sub-barrier energies. The
TF cross section computed by the cumulative absorption in
CDCC calculations was found to overestimate the experimen-
tal data. Since the CDCC calculations reproduce the elastic
scattering data reasonably, the cumulative absorption cross
section must be equal to the sum of TF and the reaction
cross sections corresponding to the target-inelastic and transfer
channels that are not included in the CDCC calculations.

The comparison of the probabilities of fusion, breakup,
inelastic, and transfer reactions reveals that breakup dominates
at sub-barrier energies and it behaves differently from others.
While all the other channels effectively get closed, the breakup
channel does not. The existence of a large breakup probability
in this region does not allow the imaginary part of the optical
potential to vanish.

The present results are very important for further under-
standing and development of theories based on a realistic
model of breakup for the reactions involving weakly bound
projectiles.
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