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1 Poisson distribution

It is often assumed in nuclear physics experiments that the probability to observen events during the mea-
surement follows the Poisson distribution:

P(n) =
λne−λ

n!
. (1)

Show that

1. the functionP(n) is normalized to probability distribution, namely
∞∑

n=0

P(n) = 1. Useex =

∞∑

n=0

xn

n!
.

2. the mean value〈n〉 =

∞∑

n=0

nP(n) is λ.

3. the variance Var(n) =

∞∑

n=0

n2P(n) − 〈n〉2 is λ.

4. the standard deviation∆n is
√
λ.

2 Estimation of irradiation time

One wants to measure the235U(n,f) cross section at 5 MeV within 1% accuracy by using an uranium-235
layer (areal number densityn = 5 × 10−6 atoms/barn) in a fission chamber and a neutron source (flux
φ = 2× 105 neutrons/sec).

1. The number of the fission isN = φnσt, wheret is the irradiation time. It is known that the cross
section is about 1 b. How many fission events are expected after 1-hr irradiation?

2. How long we have to irradiate the sample in order to measure the cross section with the uncertainty
due to counting statistics of 1%? Assume that (1) the number of observed fission events follows
the Poisson distribution, (2) the number of observed fission events represents the mean value of the
distribution, (3) the statistical uncertainty is the standard deviation of the distribution. Note that the
fractional uncertainty in the cross section∆σ due to counting statistics is related with the fractional
uncertainty in the number of the observed reactionN by ∆σ/σ = ∆N/N.
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3 Time-of-flight measurement

The time-of-flight (TOF) method is a typical method to determine the kinetic energy of neutronsE by
measuring the velocity of neutronsv. If we measure the time-of-flightt with the flight path lengthL,

E =
1
2

mv2 =
1
2

m
(L

t

)2

(2)

in the non-relativistic approximation.

1. The fractional uncertainty in the energy is related with the fractional uncertainties in the flight path
length and time-of-flight by (

∆E
E

)2

= s2
EL

(
∆L
L

)2

+ s2
Et

(
∆t
t

)2

(3)

with the relative sensitivity coefficients

sEL =
L
E
∂E
∂L

,

sEt =
t
E
∂E
∂t
. (4)

(5)

Calculate these relative sensitivity coefficients.

2. We would like to measure the energy with an accuracy of 0.1%. We can determine the flight path
length with an accuracy of 1 cm whereas the uncertainty in the time-of-flight is negligible. How long
flight path should we keep for the measurement?
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4 Uncertainty propagation to thermal cross section

The thermal (2200 m/s) neutron capture cross sectionσ measured by the activation method under a mono-
energetic neutron field can be derived by the following data reduction equation:

σ =
C
φnε I

λ

(1− e−λti )e−λtc(1− e−λtm)
(6)

whereC, λ, φ, n, ε, I are the number of counts, decay constant, neutron flux, number of target atoms per
area, detection efficiency and gamma intensity. Alsoti , tc andtm are the irradiation time, cooling time, and
measurement time.

1. There are 10 parameters on the right-hand side of the data reduction equation. The uncertainties in
some parameters can be propagated to the uncertainty in the cross section by the quadrature sum rule,
namely (

∆y
y

)2

=

n∑

i=1

(
∆xi

xi

)2

. (7)

for y = y(x1, x2, ..., xn). However this rule is not valid for some parameters in the data reduction
equation. Identify four such parameters.

2. The quadrature sum rule is generalized to

(
∆y
y

)2

=

n∑

i=1

s2
i

(
∆xi

xi

)2

, (8)

wheresi = (xi/y)∂y/∂xi is the relative sensitivity coefficient. Calculate the relative sensitivity coeffi-
cients forC, φ andλ for error propagation from∆C/C, ∆φ/φ and∆λ/λ to ∆σ/σ.

3. When the neutron field is not mono-energetic but thermalized neutrons (i.e., thermally equilibrated at
the room temperature) plus epithermal neutrons, one can still determine the thermal neutron capture
cross sectionσ by using a ”Cd-filter” which removes neutrons below 0.55 eV from the neutron
field. By using the counts without the filter (C) and with the filter (C′), the data reduction equation is
modified to

σ =
C −C′/F
φnxε Ig

λ

(1− e−λti )e−λtc(1− e−λtm)
(9)

whereF andg are the Cd transmission factor and Westcott factor. Calculate the relative sensitivity
coefficient for error propagation from∆C/C to ∆σ/σ for this extended data reduction equation.
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5 Uncertainty propagation to averaged cross section

Use EXCEL for numerical calculation to keep enough number of digits.

There are two neutron fields which group-wise neutron energy spectraΦk are summarized with the group-
wise evaluated cross sections of a standard reactionσk as follows:

Field Group Emin Emax Φk σk ∆σk/σk Correlation coefficient
(i) (k) MeV MeV neutrons/grp/µC b %
1 1 0.9 1.0 1.2× 107 0.800 1 1.00

2 1.0 1.1 0.8× 107 0.700 1 0.10 1.00
2 3 1.6 1.7 1.0× 107 0.600 1 0.05 0.05 1.00

4 1.7 1.8 1.0× 107 0.600 1 0.05 0.05 0.10 1.00
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1. Calculate the spectrum averaged standard cross sections for the two neutron fields〈σ〉i =

n∑

k=1

wikσk,

where the weighting factorwik is wik = Φk/

n∑

l=1

Φl .

2. Calculate the fractional uncertainties in the averaged standard cross sections∆ 〈σ〉i / 〈σ〉i . Use

(
∆yi

yi

)2

=

n∑

k=1

n∑

l=1

sik

(
∆xk

xk

)
Cor(xk, xl)

(
∆xl

xl

)
sil with the relative sensitivity coefficient sik =

xk

yi

(
∂y
∂xk

)

y=yi

for

y = y(x1, x2, ...xn).

3. Calculate the fractional covariance cov(〈σ〉1 , 〈σ〉2) and correlation coefficient Cor(〈σ〉1 , 〈σ〉2), where
the fractional covariance is defined as cov(x1, x2) = Cov(x1, x2)/(x1x2). Note that cov(yi , y j) =

n∑

k=1

n∑

l=1

sikcov(xk, xl)sjl and Cor(yi , y j) = cov(yi , y j)

/(
∆yi

yi

∆y j

y j

)
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6 Uncertainty propagation to interpolated detection efficiency

Use EXCEL for numerical calculation to keep enough number of digits.

One measured the detection efficienciesε(E) of a germanium detector for several gamma-lines, and
parameterized the result by

ε(E; ε0, εc,E0) = ε0 exp(−E/E0) + εc. (10)

1. Calculate three partial derivativesS0(E) = ∂ε(E)/∂ε0, SE(E) = ∂ε(E)/∂E0 andSc(E) = ∂ε(E)/∂εc.

2. Whenp dependence of a quantityy is parameterized byn parametersxi(i = 1,n) such asy(p) =

y(p; x1, x2, ..., xn), the covariance betweeny(p) andy(q) is propagated from the covariance of{xi} by

Cov(y(p), y(q)) =

n∑

i=1

n∑

j=1

(
∂y
∂xi

)

y=y(p)

Cov(xi , x j)

(
∂y
∂x j

)

y=y(q)

(11)

Show that the covariance of the detection efficiencies at two energiesEi andE j is

Cov
(
ε(Ei), ε(E j)

)
= e−

Ei +Ej
E0 (∆ε0)2 +

ε2
0EiE j

E4
0

e−
Ei +Ej

E0 (∆E0)2 + (∆εc)
2

+ ε0
Ei + E j

E2
0

e−
Ei +Ej

E0 Cov(ε0,E0)

+

(
e−

Ei
E0 + e−

Ej
E0

)
Cov(ε0, εc)

+
ε0

E2
0

(
Eie
− Ei

E0 + E je
− Ej

E0

)
Cov(E0, εc). (12)

Note that (∆xi)2 = Var(xi) = Cov(xi , xi).

3. The result of the fitting is summarized as follows:

Parameter Value Uncertainty Correlation coefficient
ε0 4.0 0.1 1.0

E0 (keV) 300 10 -0.8 1.0
εc 0.40 0.01 0.4 -0.7 1.0
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Calculate the three variances (∆ε0)2, (∆E0)2 and (∆εc)2 as well as three covariances Cov(ε0,E0),
Cov(ε0, εc) and Cov(E0, εc). Note that Cov(x, y) = Cor(x, y)∆x∆y, where Cor(x, y) is the correlation
coefficient betweenx andy.

4. Calculate the interpolated detection efficiencies and their uncertainties at 800 keV (ε800) and 1000 keV
(ε1000) as well as the covariance between them. Use(∆ε(E))2 = Var(ε(E)) = Cov(ε(E), ε(E)) for
calculation of the uncertainties.

5. Calculate the fractional uncertainties∆ε800/ε800 and∆ε1000/ε1000, and fractional covariance

cov(ε800, ε1000) = Cov(ε800, ε1000) / (ε800 · ε1000) .

6. Show that the fractional variance of the efficiency ratioη(Ei ,E j) = ε(Ei)/ε(E j) is

var
(
η(Ei ,E j)

)
= var(ε(Ei)) + var

(
ε(E j)

)
− 2 cov

(
ε(Ei), ε(E j)

)
, (13)

where the fractional variance and fractional covariance are defined as var(xi) = Var(xi)/x2
i and

cov(xi , x j) = Cov(xi , x j)/(xi · x j), respectively. Use

var(y) =

n∑

i=1

n∑

j=1

sicov(xi , x j)sj

with

si =
xi

y
∂y
∂xi

for y = y(x1, x2, ..., xn).

7. Calculate the efficiency ratioη800,1000 = ε800/ε1000 and its fractional uncertainty.
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7 Answers

1-1 ∞∑

n=0

P(n) = e−λ
∞∑

n=0

λn

n!
= e−λeλ = 1

1-2

〈n〉 =

∞∑

n=0

nP(n) =

∞∑

n=1

nP(n) = λ

∞∑

n=1

λn−1e−λ

(n− 1)!
= λ

∞∑

n=1

P(n− 1) = λ

∞∑

n=0

P(n) = λ

1-3
∞∑

n=0

n2P(n) =

∞∑

n=1

n2P(n) = λ

∞∑

n=1

n
λn−1e−λ

(n− 1)!
= λ

∞∑

n=1

λn−1e−λ

(n− 1)!
+ λ

∞∑

n=1

(n− 1)
λn−1e−λ

(n− 1)!

= λ

∞∑

n=1

P(n− 1) + λ

∞∑

n=1

(n− 1)P(n− 1) = λ

∞∑

n=0

P(n) + λ

∞∑

n=0

nP(n) = λ + λ2.

Therefore

Var(n) =

∞∑

n=0

n2P(n) − 〈n〉2 =

∞∑

n=0

n2P(n) − λ2 = λ.

1-4
∆n =

√
Var(n) =

√
λ

2-1
N = φnσt = 2× 105 · 5× 10−6 · 1 · 3.6× 103 = 3.6× 103.

2-2 From the answer of the first question, the number of the reactions expected duringt-hr irradiation is
N(t) = 3.6t × 103 and its statistical uncertainty is∆N(t) =

√
N(t) =

√
3.6t × 103 = 60

√
t. In order to

make the fractional statistical uncertainty∆N(t)/N(t) = 1/
√

N(t) to 1%, we have to irradiate the foil
for t = (1/60/0.01)2 ∼ 2.8 hr.

3-1 sEL = 2, sEt = −2.

3-2 By using the answer to the first question,

(
∆E
E

)2

= 4

(
∆L
L

)2

.

when the uncertainty in the time-of-flight is negligible. This equation shows that we have to maintain
the uncertainty in the flight path length within 0.05% to maintain the fractional uncertainty inE
within 0.1%. If we can measure the flight path length with 1 cm accuracy (i.e.,∆L=1 cm), then we
need the flight path length of 1 cm/0.05=20 cm.

4-1 λ, ti , tc andtm because they are related toσ through exponential functions.

4-2

sC =
C
σ

∂σ

∂C
= 1,

sφ =
φ

σ

∂σ

∂φ
= −1
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are obvious becauseσ is proportional or inversely proportional to these two parameters.

In order to calculatesλ, we define the four variables:A = C/(φnε I ), Λ1 = 1 − e−λti , Λ2 = e−λtc and
Λ3 = 1− e−λtm. Then the data reduction equation is

σ = A
λ

Λ1Λ2Λ3
.

Then
∂σ

∂λ
=

A
(Λ1Λ2Λ3)2

(
Λ1Λ2Λ3 − λ∂Λ1Λ2Λ3

∂λ

)
.

The partial derivative in the second term is

∂Λ1Λ2Λ3

∂λ
=

∂Λ1

∂λ
Λ2Λ3 +

∂Λ2

∂λ
Λ1Λ3 +

∂Λ3

∂λ
Λ2Λ3

= Λ1Λ2Λ3

(
tie−λti

Λ1
− tce−λtc

Λ2
+

tme−λtm

Λ3

)
.

Therefore

sλ =
λ

σ

∂σ

∂λ

= 1− λ
(
tie−λti

Λ1
− tce−λtc

Λ2
+

tme−λtm

Λ3

)

= 1− λtie−λti

1− e−λti
+ λtc − λtme−λtm

1− e−λtm
.

The second to fourth terms show the deviation from the quadrature sum rule in the error propagation.
Note thatsλ → −1 whenλti , λtc andλtm→ 0.

4-3

sC =
C
σ

∂σ

∂C
=

C
C −C′/F

=

(
1− C′

CF

)−1

The second terms show the deviation from the quadrature sum rule in the error propagation.

5-1

< σ >1 = w11σ1 + w12σ2 =
Φ1

Φ1 + Φ2
σ1 +

Φ2

Φ1 + Φ2
σ2 = 0.760 b,

< σ >2 = w23σ3 + w24σ4 =
Φ3

Φ3 + Φ4
σ3 +

Φ4

Φ3 + Φ4
σ4 = 0.600 b.

5-2
(
∆ 〈σ〉i
〈σ〉i

)2

=
∑

k

∑

l

[
σk

〈σ〉i
∂ 〈σ〉i
∂σk

]
∆σk

σk
Cor(σk, σl)

∆σl

σl

[
∂ 〈σ〉i
∂σl

σl

〈σ〉i

]

=
∑

k

∑

l

wikwil
σkσl

〈σ〉2i
∆σk

σk

∆σl

σl
Cor(σk, σl),
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where thek and l under the summation symbols run from 1 to 2 for the field 1, and from 3 to 4 for
the field 2. Namely

(
∆ 〈σ〉1
〈σ〉1

)2

= w2
11

σ2
1

〈σ〉21

(
∆σ1

σ1

)2

+ w2
12

σ2
2

〈σ〉21

(
∆σ2

σ2

)2

+ w11w12
σ1σ2

〈σ〉21

(
∆σ1

σ1

) (
∆σ2

σ2

)
Cor(σ1, σ2)

∼ 0.558%2,(
∆ 〈σ〉2
〈σ〉2

)2

= w2
23

σ2
3

〈σ〉22

(
∆σ3

σ3

)2

+ w2
24

σ2
4

〈σ〉22

(
∆σ4

σ4

)2

+ w23w24
σ3σ4

〈σ〉22

(
∆σ3

σ3

) (
∆σ4

σ4

)
Cor(σ3, σ4)

∼ 0.525%2.

Therefore (
∆ 〈σ〉1
〈σ〉1

)
∼ 0.747%,

(
∆ 〈σ〉2
〈σ〉2

)2

∼ 0.725%.

These results show that the fractional uncertainties of the averaged cross sections (∼0.7%) are
smaller than those in the original group-wise cross sections (1%).

5-3

cov(〈σ〉1 , 〈σ〉2) =

2∑

k=1

4∑

l=3

σk

〈σ〉1
∂ 〈σ〉1
∂σk

cov(σk, σl)
∂ 〈σ〉2
∂σl

σl

〈σ〉2

=

2∑

k=1

4∑

l=3

w1kw2l
σk

〈σ〉1
σl

〈σ〉2
cov(σk, σl)

= w11w23
σ1

〈σ〉1
σ3

〈σ〉2
cov(σ1, σ3) + w11w24

σ1

〈σ〉1
σ4

〈σ〉2
cov(σ1, σ4)

+ w12w23
σ2

〈σ〉1
σ3

〈σ〉2
cov(σ2, σ3) + w12w24

σ2

〈σ〉1
σ4

〈σ〉2
cov(σ2, σ4) = 0.05%2

Cor(〈σ〉1 , 〈σ〉2) = cov(〈σ〉1 , 〈σ〉2)

/(
∆ 〈σ〉1
〈σ〉1

∆ 〈σ〉2
〈σ〉2

)
∼ 0.05/0.75/0.72∼ 0.09.

We can summarize the averaged cross sections, their uncertainties and correlation as follows:

Field Emin Emax 〈σ〉i ∆ 〈σ〉i / 〈σ〉i Correlation coefficient
(i) MeV MeV b %
1 0.9 1.1 0.76 0.75 1.00
2 1.6 1.8 0.60 0.72 0.09 1.00

6-1

S0(E) =
∂ε(E)
∂ε0

= e−
E

E0 ,

SE(E) =
∂ε(E)
∂E0

=
ε0E

E2
0

e−
E

E0 ,

Sc(E) =
∂ε(E)
∂εc

= 1.

9



6-2

Cov
(
ε(Ei), ε(E j)

)
= S0(Ei)S0(E j)Cov(ε0, ε0) + S0(Ei)SE(E j)Cov(ε0,E0) + S0(Ei)Sc(E j)Cov(ε0, εc)

+ SE(Ei)S0(E j)Cov(E0, ε0) + SE(Ei)SE(E j)Cov(E0,E0) + SE(Ei)Sc(E j)Cov(E0, εc)

+ Sc(Ei)S0(E j)Cov(εc, ε0) + Sc(Ei)SE(E j)Cov(εc,Ec) + Sc(Ei)Sc(E j)Cov(εc, εc)

= S0(Ei)S0(E j)Cov(ε0, ε0) + SE(Ei)SE(E j)Cov(E0,E0) + Sc(Ei)Sc(E j)Cov(εc, εc)

+
[
S0(Ei)SE(E j) + S0(E j)SE(Ei)

]
Cov(ε0,E0)

+
[
S0(Ei)Sc(E j) + S0(E j)Sc(Ei)

]
Cov(ε0, εc)

+
[
SE(Ei)Sc(E j) + SE(E j)Sc(Ei)

]
Cov(E0, εc)

= S0(Ei)S0(E j)(∆ε0)2 + SE(Ei)SE(E j)(∆E0)2 + (∆εc)
2

+
[
S0(Ei)SE(E j) + S0(E j)SE(Ei)

]
Cov(ε0,E0)

+
[
S0(Ei) + S0(E j)

]
Cov(ε0, εc)

+
[
SE(Ei) + SE(E j)

]
Cov(E0, εc)

= e−
Ei +Ej

E0 (∆ε0)2 +
ε2

0EiE j

E4
0

e−
Ei +Ej

E0 (∆E0)2 + (∆εc)
2

+ ε0
Ei + E j

E2
0

e−
Ei +Ej

E0 Cov(ε0,E0)

+

(
e−

Ei
E0 + e−

Ej
E0

)
Cov(ε0, εc)

+
ε0

E2
0

(
Eie
− Ei

E0 + E je
− Ej

E0

)
Cov(E0, εc).

6-3

(∆ε0)2 = 0.01,

(∆E0)2 = 100 (keV2),

(∆εc)
2 = 0.0001,

Cov(ε0,E0) = ∆ε0∆E0Cor(ε0,E0) = −0.8 (keV),

Cov(ε0, εc) = ∆ε0∆εcCor(ε0, εc) = 0.0004,

Cov(E0, εc) = ∆E0∆εcCor(E0, εc) = −0.07 (keV).

6-4 First, the equation to obtain the variance in the interpolated detection efficiency is

Var(ε(E)) = Cov(ε(E), ε(E))

= e−
2E
E0 (∆ε0)2 +

ε2
0E2

E4
0

e−
2E
E0 (∆E0)2 + (∆εc)

2

+
2ε0E

E2
0

e−
2E
E0 Cov(ε0,E0)

+ 2e−
E

E0 Cov(ε0, εc)

+
2ε0E

E2
0

e−
E

E0 Cov(E0, εc).
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The interpolated efficiencies at two energies and their uncertainties are

ε800 ∼ 0.6779± 0.0139,

ε1000∼ 0.5427± 0.0090,

Cov(ε800, ε1000) ∼ 0.0001160.

6-5

∆ε800/ε800 ∼ 0.0139/0.6779∼ 2.053%,

∆ε1000/ε1000 ∼ 0.0090/0.5427∼ 1.650%.

cov(ε800, ε1000) ∼ 0.0001160/(0.6779· 0.5427)∼ 3.153%2.

6-6 If we setεi = ε(Ei) andε j = ε(E j), we can writeη = η(εi , ε j) = εi/ε j . Then

var(η) =

(
εi
η

∂η

∂εi

)
cov(εi , εi)

(
εi
η

∂η

∂εi

)
+

(
εi
η

∂η

∂εi

)
cov(εi , ε j)

(
ε j

η

∂η

∂ε j

)

+

(
ε j

η

∂η

∂ε j

)
cov(ε j , εi)

(
εi
η

∂η

∂εi

)
+

(
ε j

η

∂η

∂ε j

)
cov(ε j , ε j)

(
ε j

η

∂η

∂ε j

)

= cov(εi , εi) − cov(εi , ε j) − cov(ε j , εi) + cov(ε j , ε j)

= var(εi) + var(ε j) − 2cov(εi , ε j).

6-7

η800,1000 = ε800/ε1000∼ 1.2492.

var(η800,1000) = var(ε800) + var(ε1000) − 2cov(ε800, ε1000)

∼ (2.053%)2 + (1.650%)2 − 2× 3.153%2 ∼ 0.6312%2.

∆η800,1000/η800,1000 =
√

var(η800,1000) ∼
√

0.6312%2 ∼ 0.7945%.

The fractional uncertainty of the detection efficiency ratio (∼0.8%) is smaller than the fractional
uncertainty of the detection efficiencies (∼2%) because of the covariance term.
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