

International Atomic Energy Agency

Multiple Random Variables and Their Correlation

Naohiko Otsuka

IAEA Nuclear Data Section

Multiple Random Variables

As an extension of the probability distribution for a single random variable P_k or P(x), we can consider the distribution for two more random variables $P_{k,l,m}$,... or P(x,y,z,...).

Example: Probability to see k on the first dice and see I on the second dice

k	1	1	1	1	1	1	2	•••
L	1	2	3	4	5	6	1	•••
P _{k,l}	1/36	1/36	1/36	1/36	1/36	1/36	1/36	

Mean, Variance and Standard Deviation (Discrete Multiple Variable)

Definition of mean, variance and standard deviation for a discrete random variable k following the probability distribution $P_{k,l}$:

Mean

$$\langle k \rangle = \Sigma_{k=1,n} k \cdot P_{k,l,..}$$

Variance

$$v_{kk} = \langle (k - \langle k \rangle)^2 \rangle = \langle dk \cdot dk \rangle = \langle k^2 \rangle - \langle k \rangle^2$$

Standard deviation

∆k=(v)^{1/2}

Covariance (not defined in single random variable distribution)
 v_{kl} = <(k-<k>)(l-<l>)>=<k·l>-<k><l>

Mean, Variance and Standard Deviation (Continuous Variable)

For continuous multiple random variable x, y,... similarly

Mean

Variance

$$v_x = \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$

Standard deviation

$$\Delta x = (v_x)^{1/2}$$

Covariance

$$v_{xy} = \langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle = \langle x \cdot y \rangle - \langle x \rangle \langle y \rangle$$

Correlation Coefficient

For variance V_{xx} , V_{yy} and covariance V_{xy} , $c_{xy} = V_{xy} / (V_{xx} \cdot V_{yy})^{1/2}$ is defined as the correlation coefficient.

• c_{xy} =0 if x and y are independent. • c_{xy} =±1 if x=±y. •In general -1 ≤ c_{xy} ≤ 1.

5

Uncorrelated and Fully Correlated Parameters

Six measurements of two uncorrelated parameters (x,y) $P(x,y) = P_x(x) P_y(y)$ (x and y are <u>independent</u>) $\rightarrow c_{xy}=0$

Six measurements of two fully correlated parameters (x,y)

Correlation is not Property of Nature

Two random variables behave <u>independent</u> if they are measured *independently*.

Correlation between random variables appears due to a procedure introduced by *experimental procedure*, e.g.,

- x=y assumed by measuring only x (or y);

 - x(p,q) and y(p,q) derived from correlated two observables p and q (e.g., interpolation from fitting)

Correlation: Two Reactions and Two Energies

 $\sigma_{xi} = A_{xi}/(\epsilon_x \cdot N_x \cdot \phi_i)$ $\sigma_{xj} = A_{xj}/(\epsilon_x \cdot N_x \cdot \phi_j)$ $\sigma_{yi} = A_{yi}/(\epsilon_y \cdot N_y \cdot \phi_i)$ $\sigma_{yj} = A_{yj}/(\epsilon_y \cdot N_y \cdot \phi_i)$

 σ_x

 σ_v

A: measured counting rate (independent)
ε: detector efficiency (2 values for x and y)
N: number of sample atoms (2 values for x and y)
φ: beam flux density (2 values for i and j)

Source of correlation between two cross sections due to assumption of equality

	σ _{xi}	σ_{xj}	σ_{yi}	$\boldsymbol{\sigma}_{yj}$
σ _{xi}	-	ε _x , N _x	φ _i	(ind.)
σ_{xj}		-	(ind.)	φ _j
σ _{yi}			-	ε _γ , Ν _γ
σ_{yj}				-

ind.: independent

• E_i E_j EPNRDM 2017 (Mizoram Univ.)

E,

F

F

E

0

9

Correlation within Single Experiment

Example: Cross section measurement at various beam energy with renormalization factor **C** and subtraction of background **B**

Typical correlated source within one experiment

- Common sample characterization(n)
- Common normalization factor (C)
- Common background subtraction (B)

Average within Single Experiment

Correlation in Various Steps of Data Reduction

Correlation depends on the data reduction procedure. (i.e., Correlation is not a physical quantity and not unique.)

Summary

- For multiple random variables, covariance is defined.
- Correlation coefficient $c_{xy} = V_{xy} / (V_{xx} V_{yy})^{1/2}$.
- Fully correlated c_{xy}=1, uncorrelated c_{xy}=0.
- Correlation is introduced by experimentalists!