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A B S T R A C T

The IAEA Nuclear Data Section (IAEA NDS) has emphasized the importance of archiving experimental nuclear
data with detailed description of the uncertainties to provide reasonable evaluated (recommended) data sets
with their uncertainties to end-users of nuclear data. In order to achieve this goal, the IAEA NDS is transferring
relevant knowledge to experimentalists by instructing uncertainty propagation for their specific experiments.
This article discusses uncertainty propagation based on detailed description of uncertainties in neutron- and
charged-particle-induced activation cross sections measured in our studies.

1. Introduction

Activation of sample materials is a technique to determine nuclear
reaction cross sections for radioisotope productions (activation cross
sections) by measuring radiations from the radioactive products, and it
has been widely applied to nuclear reactions with various projectiles
(e.g., neutron, charged-particle, photon) for many decades. Activation
cross sections are basic nuclear data in a wide range of nuclear
applications (e.g., radioisotope production, reactor dosimetry, con-
struction and decommission of nuclear facilities) as well as sciences
(e.g., nuclear astrophysics, cosmochemistry), and their experimental
results have been utilized by end-users in various fields through
compilation in the EXFOR Library (Otuka et al., 2014) and evaluation
for development of general purpose nuclear reaction data libraries
(e.g., CENDL-3.1, Ge et al., 2011; ENDF/B-VII.1, Chadwick et al.,
2011; JEFF-3.1.1, Santamarina et al., 2009; JENDL-4.0, Shibata et al.,
2011; TENDL-2015, Koning and Rochman, 2012), activation data
libraries (e.g., EAF-2010, Sublet et al., 2010) as well as dosimetry data
libraries (e.g., IRDFF-1.05, Capote et al., 2012). The uncertainty
accompanied with the activation cross section is essential in determi-
nation of reasonable margin contributing to both safety and economy
in nuclear applications.

If several data points of the activation cross sections are involved in
determination of the quantity of interest (e.g., reaction rate obtained by
folding of energy dependent activation cross sections by the spectrum

characterizing the incident particle field), the correlation (covariance)
among the data points has to also be considered to avoid overestima-
tion or underestimation of the uncertainty in the quantity of interest.
Due to this situation, modern evaluation tries to provide not only the
best estimate of the cross section but also its uncertainty and
covariance describing correlation among cross sections of the same
reaction or even different reactions (cross correlation). In order to
provide the uncertainty and covariance in addition to the best estimate
of the cross section based on the experimental knowledge, data
evaluators need detailed documentation of the uncertainties in each
experiment. However evaluators often face difficulty due to lack of
sufficient documentation of the experiment. At the worst case the
evaluators cannot find any information on the uncertainty in the
measured cross section, and it is also not rare to see a total uncertainty
without its breakdown (e.g., partial uncertainty due to counting
statistics).

In order to improve the situation, the IAEA Nuclear Data Section
(NDS) is encouraging experimentalists to perform appropriate uncer-
tainty propagation and documentation in collaboration with external
experts (Mannhart, 2013; Smith and Otuka, 2012; Schillebeeckx et al.,
2012; Otuka et al., 2011, 2012; Otuka and Smith, 2014). However, we
found that mere publications and presentations of guidelines are not
sufficient to achieve our goal, and have thus recognized the importance
to take more practical approaches relevant to designs of individual
experiments.
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In this article, we introduce two examples of our approach in real
neutron- and charged-particle-induced activation cross section mea-
surements performed in India and Japan, respectively, following a
short summary on the basic concepts and uncertainty propagation
formulae as well as a simple and hypothetical example demonstrating
the importance of the uncertainty information for data evaluators.

2. Basic concepts and uncertainty propagation formulae

We consider various parameters required in cross section determi-
nations (e.g., number of counts, number of incident particles, number
of atoms in the sample) as random variables xk k( = 1, 2, ‥) following a
probability distribution function p x x( , , ‥)1 2 normalized as

∫ xp x xd ( , , …) = 1
−∞

+∞
1 2 , where x x xd = d d …1 2 . The mean value (best

estimate) xk0, covariance x xCov( , )k l , correlation coefficient x xCor( , )k l ,
variance xVar( )k , and standard deviation xΔ k are defined by

∫ xx x p x x= d ( , , ‥),k k0 1 2 (1)

∫ xx x x x x x p x xCov( , ) = d ( − )( − ) ( , , ‥),k l k k l l0 0 1 2 (2)

x x x x x xCor( , ) = Cov( , )/(Δ Δ ),k l k l k l (3)

∫ xx x x p x x x xVar( ) = d ( − ) ( , , ‥) = Cov( , ),k k k k k0
2

1 2 (4)

x xΔ = Var( ) ,k k (5)

respectively. By definition, x x0 ≤ Cor( , ) ≤ 1k l and especially =1 when
k=l. In nuclear data, one standard deviation of the parameter is usually
treated as its uncertainty.1 If x1 is independent from the other
parameters, we can decompose the probability distribution as

p x x x P x Q x x( , , , …) = ( ) ( , , …),1 2 3 1 2 3 (6)

and x xCov( , ) = 0k1 k( ≠ 1) according to the definition of the covariance.
If a set of quantities of interest y{ }i are related to the parameters x{ }k

by y y x x= ( , , ‥)i i 1 2 and the relation can be linearized by expansion
around the mean values of the parameters as

∑y y a x x= + ( − )i i
k

ik k k0 0
(7)

with y y x x= ( , , ‥)i i0 10 20 and a y x= (∂ /∂ )ik i k x x=k k0
(sensitivity coefficient),

the variance and covariance of xk are propagated to those of yi by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑y a x a x a x x aVar( ) = Var = Var( ) + 2 Cov( , ) ,i

k
ik k

k
ik k

k l
ik k l il

2

> (8)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑ ∑y y a x a x a x x aCov( , ) = Cov , = Cov( , ) .i j

k
ik k

l
jl l

k l
ik k l jl

(9)

When yi takes a multiplication form

∏y x=i
k

k
gik

(10)

with g =+ 1ik , −1 or 0 (e.g., y x x x x x x= ( )/( )k 1 2 3 4 5 6 , x x x x( )/( )1 3 4 5 ), the
sensitivity coefficients are simplified to a g y x= /ik ik i k0 0. If there is no
correlation in x{ }k , Eq. (8) is simplified to

∑y g xvar( ) = var( ),i
k

ik k
2

(11)

namely

∑y y g x x(Δ / ) = (Δ / ) ,i i
k

ik k k0
2 2

0
2

(12)

where the fractional variance μ μ μvar( ) = Var( )/ 0
2 is introduced. This

shows that the quadratic sum of the fractional (%) uncertainties in the
parameters gives the fractional uncertainty in the quantity of interest.
It is often forgotten that this quadratic sum formula is valid only when
the quantity of interest is related with the parameters by Eq. (10).

When yi is expressed in the form of Eq. (10) but correlation exists
among x{ }k , Eqs. (8) and (9) are simplified to

∑ ∑y g x g x x gvar( ) = var( ) + 2 cov( , ) ,i
k

ik k
k l

ik k l il
2

> (13)

∑y y g x x gcov( , ) = cov( , ) ,i j
k l

ik k l jl
, (14)

where the relative covariance μ ν μ ν μ νcov( , ) = Cov( , )/( )0 0 is introduced.
Usually not all combinations of xk and xl have correlation but correlate
each other within their n subsets such as x x x( , , …, )M1 2 1 ,
x x( , …, ), …M M1+1 2 . In such a case, the covariance terms in Eqs. (13)
and (14) can be decomposed to

∑ ∑ ∑ ∑g x x g g x x gcov( , ) = cov( , ) ,
k l

ik k l il
i

n

k M

M

l k

M

ik k l il
> =1 = +1 = +1i

i i

−1 (15)

∑ ∑ ∑g x x g g x x gcov( , ) = cov( , )
k l

ik k l jl
i

n

k l M

M

ik k l jl
, =1 , = +1i

i

−1 (16)

with M = 00 . For example, we expect that the number of counts Ci
(always independent from other parameters), number of atoms in the
samples per area ni, and number of the incident particles Φi acting as
six parameters {xi} (i=1,6) describing the cross sections σi=Ci/(niΦi)
(i=1,2) has the following fractional covariances:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

C
C

n
n n n

var( )
0 var( )
0 0 var( )
0 0 cov( , ) var( )
0 0 0 0 0
0 0 0 0 0 0

1

2

1

1 2 2

(17)

if the uncertainty in Φi is negligible.
When yi cannot be expressed by Eq. (10) and there is no correlation

in parameters x{ }k , Eq. (8) can be rewritten as

∑y y s x x(Δ / ) = (Δ / ) ,i i
k

ik k k0
2 2

0
2

(18)

where

s x y y x x y a= ( / )(∂ /∂ ) = ( / )ik k i i k x x k i ik0 0 = 0 0k k0 (19)

is the relative sensitivity coefficient. Eq. (18) shows that we should
distinguish the following two statements: “Uncertainty in yi due to the
uncertainty in xk” (i.e., s x x(Δ / ))ik k k0 , and “Uncertainty in xk” (i.e.,

x xΔ /k k0) though it is often not distinguished well in the literature.
A most typical situation creating correlation is seen when we

assume two parameters to be equal. If x x=1 2 is assumed and they
are independent from the rest of the parameters, we can decompose the
probability distribution as

p x x x P x δ x x Q x x( , , , …) = ( ) ( − ) ( , , …),1 2 3 1 1 2 3 4 (20)

where δ x( ) is the Dirac delta function.2 By using

∫ ∫ ∫x x P x δ x x f x x x P x f x x x P x f x xd d ( ) ( − ) ( , ) = d ( ) ( , ) = d ( ) ( , )1 2 1 1 2 1 2 1 1 1 1 2 2 2 2

for a given function f x x( , )1 2 , the variance and covariance of x1 and x2
are related by

x x x xVar( ) = Var( ) = Cov( , ),1 2 1 2 (21)

1 The uncertainty must be distinguished from the error which is the deviation of the
best estimate from the true value. The true value is unknowable and therefore the error is
also unknowable.

2 δ x( ) = 0 for x ≠ 0, and ∫ x δ xd ( ) = 1
−∞
+∞

. From these properties,

∫ x δ x a f x f ad ( − ) ( ) = ( )
−∞
+∞

for a given function f(x).
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and therefore x xCor( , ) = 11 2 (fully correlated). On the other hand
x xCor( , ) = 01 2 (uncorrelated) when x1 and x2 are determined indepen-

dently (i.e., p x x x p x p x Q x x( , , , …) = ( ) ( ) ( , , …)1 2 3 1 1 2 2 3 4 ). A most typical

uncorrelated parameter is the number of counts C for which C CΔ =
assuming that C is described by the Poisson distribution. The situation

x x0 < Cor( , ) < 11 2 (partially correlated) occurs when x1 and x2 are
determined not independently, but still x2 is not automatically deter-
mined from x1 (i.e., p x x x P x x Q x x( , , , …) = ( , ) ( , , …)1 2 3 1 2 3 4 ). A typical
situation creating this type of correlation is seen when x1 and x2 are on
the same curve characterized by a set of parameters a b, , … such as
x f x a b= ( ; , , …)k k (e.g., two detection efficiencies obtained from the
same efficiency curve characterized by parameters a b, , …). The
correlation coefficients of two parameters uncorrelated, partially
correlated, and fully correlated in their matrix expressions are there-
fore

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

r
r

1 0
0 1 , 1

1 and 1 1
1 1 ,

(22)

respectively r(0 < < 1).
Section B of Mannhart (2013) and Section II of Smith and Otuka

(2012) provide good introductions to those who are interested in more
details on the subjects discussed in this section.

3. Impact of experimental uncertainty on data evaluation

When sufficient experimental data points are available, the least
squares method is a useful tool to determine the best estimate of the
quantity in nuclear data evaluation. In order to demonstrate the
importance of the detailed information on the experimental uncer-
tainty for data evaluation, we discuss a simple and hypothetical
example where an activation cross section σ is evaluated from two
experimental data points by using the weighted mean, which is a
special case of the least squares method (Appendix 2 of Mannhart,
2013). If we use the conventional weighted mean formula, the mean
and variance of σ are

⎧
⎨
⎪⎪

⎩
⎪⎪

σ
V σ Vσ

V V

σ
VV

V V

=
+
+

,

Var( ) =
+

,

2 1 1 2

1 2

1 2

1 2 (23)

where V σ= Var( )i i . For a set of two experimental cross sections

⎧⎨⎩
σ
σ

= 100.0 ± 5.0 mb
= 100.0 ± 5.0 mb.

1

2 (24)

Eq. (23) gives σ = 100.0 ± 3.5 mb. This result shows that the uncer-
tainty was improved from 5.0 mb to 3.5 mb by repeating the experi-
ment twice.

If σi is obtained from the number of counts Ci, number of incident
particles irradiated the target Φi and number of atoms in the target per
area ni by

σ C n Φ= /( ),i i i i (25)

σΔ i is then propagated from CΔ i, ΦΔ i and nΔ i by

σ σ C C n n Φ Φ(Δ / ) = (Δ / ) + (Δ / ) + (Δ / )i i i i i i i i
2 2 2 2 (26)

according to the quadratic sum formula of Eq. (12). The uncertainty
obtained by the conventional weighted mean formula (3.5 mb) is
correct as long as all three parameters Ci, Φi and ni are determined
in two experiments independently.

If there is a parameter not determined independently in two
experiments, correlation exists between σ1 and σ2, and we have to
use the off-diagonal weighted mean formula (Mannhart, 2013) instead
of Eq. (23):

⎧
⎨
⎪⎪

⎩
⎪⎪

σ
V V σ V V σ

V V V

σ
VV V

V V V

=
( − ) + ( − )

+ − 2
,

var( ) =
− ( )

+ − 2
,

2 12 1 1 12 2

1 2 12

1 2 12
2

1 2 12 (27)

where V σ σ= Cov( , )12 1 2 . Among six parameters, correlation may exist
between Φ1 and Φ2, and n1 and n2, and therefore

V
σ
Φ

Φ Φ
σ
Φ

σ
n

n n
σ
n

=
∂
∂

Cov( , )
∂
∂

+
∂
∂

Cov( , )
∂
∂12

1

1
1 2

2

2

1

1
1 2

2

2 (28)

according to Eq. (9). Note that C CCov( , ) = 01 2 because the numbers of
the counts from two experiments are always independent.

When it is difficult to obtain a certain amount of the target material
(e.g., minor actinide sample), two experiments performed at two
laboratories sometimes share the same target material. If Φi was
determined independently in two experiments (e.g., Φ ΦCov( , ) = 01 2 ),
but ni determined in one experiment is adopted in both experiments
(i.e., n n n n= = ± Δ1 2 ), n n nCov( , ) = (Δ )1 2

2 according to Eq. (21), and

V σ n n σ n= ( / )(Δ ) ( / ).12 1
2

2 (29)

For partial uncertainties of two measured cross sections summarized in
Table 1, Eq. (27) gives 100.0 ± 4.1 mb instead of 100.0 ± 3.5 mb. This
shows that the uncertainty of the weighted mean is less improved if we
do not measure ni twice independently.

This example demonstrates that the documentation of the data
reduction equation (e.g., Eq. (25)), partial uncertainties and their
correlation properties (e.g., Table 1) are necessary to estimate the
uncertainty in the evaluated cross section properly.

4. Activation cross section measurements

In general, derivation of the activation cross section for the reaction
of interest x is expressed by modifying Eq. (25) to

σ
C

n ϕ I f
=

ϵx
x

x x x x (30)

where Cx, nx, ϕ, ϵx and Ix are the number of counts, number of atoms
in the target per area, number of incident particles per irradiation time,
detection efficiency, and radiation intensity. The time factor fx is
defined by

f e e e λ= (1 − ) (1 − )/x
λ t λ t λ t

x
− − −x i x c x x m x, , (31)

with the irradiation time ti, cooling time tc x, , measurement time tm x, ,
and decay constant λx.

In order to avoid direct measurement of ϕ, it is often determined by
using a monitor (reference) reaction r for which

σ
C

n ϕ I f
=

ϵr
r

r r r r (32)

with

f e e e λ= (1 − ) (1 − )/ ,r
λ t λ t λ t

r
− − −r i r c r r m r, , (33)

Table 1
Summary of results from two hypothetical experiments with their weighted mean.

Exp.1 Exp.2 Remark

σi 100.0 mb 100.0 mb

σ σΔ /i i 5% 5% Total uncertainty

C CΔ /i i 4% 4%

n nΔ /i i 3% n n=1 2 assumed

Φ ΦΔ /i i (Negligible) (Negligible)

σ 100 ± 3.5 mb Conventional mean
100 ± 4.1 mb Off-diagonal mean
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where the cross section σr (monitor cross section) is well established
(e.g., Carlson et al., 2009; Tárkányi et al., 2001), and we can rewrite Eq.
(30) as

σ σ
C
C

n
n

I
I

f
f

=
ϵ
ϵ

.x r
x

r

r

x

r

x

r

x

r

x (34)

According to the quadratic sum formula (Eq. (12)), the uncertainty
in σx is related with those in the parameters by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟∑ ∑σ

σ
q

q
q

q
σ

σ
Δ

=
Δ

+
Δ

+
Δx

x q

x

x q

r

r

r

r

2 2 2 2

(35)

q C n I f( = , , ϵ, , ) if all parameters appearing on the right-hand side of
Eq. (34) are independent.

The following two subsections discuss two examples of activation
cross section measurements (Punte et al., 2017; Lalremruata et al.,
2017; Usman et al., 2017).

4.1. Neutron induced activation cross section measurement

The 70Zn(n,γ)71mZn cross section was measured at the BARC
Folded Tandem Ion Accelerator (FOTIA) Facility (Mumbai, India) by
Mizoram University in collaboration with BARC and IAEA with the
197Au(n,γ)198Au reaction as a monitor reaction. A zinc foil enriched
(72.4%) to 70Zn was sandwiched by gold foils, and irradiated by
neutrons produced by the 7Li(p,n)7Be reaction. The measured cross
sections are still under analysis, and will be published separately
(Punte et al., 2017; Lalremruata et al., 2017). Below, we discuss our
determination of the uncertainty in the 70Zn(n,γ)71mZn cross section
due to the uncertainties in the detection efficiency, 197Au(n,γ)198Au
monitor cross section and time factor.

4.1.1. Uncertainty in detection efficiency
In this experiment, a hyperpure germanium detector separated by

1 cm from the irradiated foil stack was used to determine Cx and Cr in
Eq. (34). The detection efficiencies of the detector were measured by
using eight γ-lines of a 152Eu calibration source. The detection
efficiency for the i-th γ-line (emission probability Ii, Martin, 2013)
was determined by

C K
A e e I

ϵ =
(1 − )

,i
i i

λt λt
i0

− −c m (36)

where Ci is the number of counts during the measuring time tm, Ki is
the correction factor for the coincidence summing effect, A0 is the
activity of the calibration source at the time of its manufacture, tc is the
time elapsed from the date of manufacturer to the start of counting, λ is
the decay constant of 152Eu. Fig. 1(a) shows the measured detection
efficiencies.

We express the energy dependence of the detection efficiency by

E E Eϵ( ) = ϵ exp( − / ) + ϵ ,γ γ c0 0 (37)

where three parameters (ϵ0, E0 and ϵc) are determined by fitting this
function to the measured detection efficiencies {ϵ }i with their uncer-
tainties propagated from C CΔ =i i and IΔ i determined by the ENSDF
evaluator (Martin, 2013). Note that we do not have to propagate the
uncertainties in the parameters commonly applied to all γ-lines (e.g.,

AΔ 0, λΔ ) because only the ratio of the detection efficiency η( = ϵ /ϵ )r x r x, is
required in our cross section determination. The fit parameters
reproducing {ϵ }i in Table 2 gives the detection efficiency curve Eϵ( )γ
in Fig. 1(a).

Applying Eq. (9) to Eq. (37), we can propagate the covariances of
the three fit parameters to the two detection efficiencies at Ei and Ej on
the curve by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

E E e
E E
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e E

E E

E
e ϵ E

e e

E
E e E e E

Cov(ϵ( ), ϵ( )) = (Δϵ ) +
ϵ

(Δ ) + (Δϵ )

+ ϵ
+

Cov( , )

+ + Cov(ϵ , ϵ )

+
ϵ

+ Cov( , ϵ ),

i j

E E
E i j

E E
E c

i j
E E

E

E
E

E
E c

i

E
E j

E
E c

−
+

0
2 0

2

0
4

−
+

0
2 2

0
0
2

−
+

0 0

− −
0

0

0
2

− −
0

i j i j

i j

i j

i j

0 0

0

0 0

0 0

(38)

which can be also used to obtain the uncertainty in the detection
efficiency E E(Δϵ ) = Cov(ϵ( ), ϵ( ))i i i

2 . Eq. (34) shows that we need only
the ratio of the efficiencies η = ϵ /ϵr x r x, , which fractional uncertainty

η ηΔ /r x r x, , is propagated from var(ϵ )x , var(ϵ )r and cov(ϵ , ϵ )r x by

ηvar( ) = var(ϵ ) + var(ϵ ) − 2cov(ϵ , ϵ )r x r x r x, (39)

according to Eq. (13).
Fig. 1(b) compares the fractional uncertainty in the interpolated

detection efficiency ratio η E η EΔ ( )/ ( )γ γ with the fractional uncertainties
in the measured detection efficiency Δϵ /ϵi i and interpolated detection
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Fig. 1. (a) Detection efficiency curve Eϵ( ) obtained from measured detection efficiencies

for γ-lines of a 152Eu calibration source ϵi i( = 1, 8). (b) The fractional uncertainties in the

measured detection efficiencies (Δϵ /ϵ )i i , interpolated detection efficiency E E(Δϵ( )/ϵ( ))γ γ ,

and detection efficiency relative to the detection efficiency for the 411 keV γ-line of 197Au
η E η E(Δ ( )/ ( ))γ γ , where η E E( ) = ϵ( )/ϵγ γ (411 keV).

Table 2
The parameters of the detection efficiency curve Eϵ( )γ reproducing the measured
detection efficiencies {ϵ }i with their uncertainties and correlation coefficients (×100).

Parameter Value Correlation coefficient

ϵ0 3.889 ± 0.208 100
E0 (keV) 279.541 ± 16.880 −84 100
ϵc 0.428 ± 0.019 41 −69 100
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efficiency E EΔϵ( )/ϵ( )γ γ . This figure shows that the uncertainty in the
interpolated detection efficiency is larger than those in the measured
detection efficiencies, however the uncertainty is drastically reduced if
we use the ratio of the interpolated detection efficiencies due to the
third term of Eq. (39). The uncertainty in ηr x, approaches zero
especially when the γ-line of the reaction product is very close to the
γ-line of the monitor reaction product 198Au (411 keV). Actually the γ-
line of the reaction product 71mZn (386 keV) is in this situation, and we
finally obtained its detection efficiency ratio with very low uncertainty

η ηΔ / = 0.257%r x r x, , .

4.1.2. Uncertainty in monitor cross section
The 197Au(n,γ)198Au cross section in the IAEA Neutron Cross-

Section Standards (Carlson et al., 2009, Fig. 2(a)) was adopted as the
monitor cross section in this experiment. Because the 7Li(p,n0)

7Be
incident neutron beam is not monoenergetic but has energy spread
(En=0.96 ± 0.15 and 1.69 ± 0.15 MeV, see Fig. 2(b)), the point-wise
monitor cross section in the IAEA Neutron Cross-Section Standards
σ E( )r was folded by the neutron flux energy spectrum ϕ E( )i

(∫ Eϕ Ed ( ) = 1i0

∞
; i=1 and 2 are for E =n 0.96 and 1.69 MeV) calculated

by a newly developed code EPEN (Pachuau et al., 2017a, 2017b):

∫σ Eϕ E σ E= d ( ) ( ).r i i r, (40)

The IAEA Neutron Cross-Section Standards provide the covariance
information of σ E( )r for its group-wise cross section expression:

⎛
⎝⎜

⎞
⎠⎟∫σ Eσ E E E= d ( ) ( − ),r k E

E

r k k,max ,min
k

k

,min

,max

(41)

where Ek,min and Ek,max are the lower and upper boundaries of the k-th
energy group. Similarly, we also introduce the group-wise neutron flux
energy spectrum Φi k, by

∫Φ Eϕ E= d ( )i k
E

E

i,
k

k

,min

,max

(42)

which satisfies Φ∑ = 1k i k, . These group-wise quantities are shown in
Fig. 2 and Table 3, where k=1–11 and 12–15 are for the
E = 0.96 ± 0.15n and 1.69 ± 0.15 MeV neutrons, respectively.

By using σr k and Φi k, , Eq. (40) is discretized to

∑σ Φ σ= .r i
k

i k r k, ,
(43)

Then the uncertainty and covariance in the IAEA Neutron Cross-
Section Standards are propagated to σr i, by

∑ ∑σ Φ σ Φ σ σ ΦVar( ) = Var( ) + 2 Cov( , )r i
k

i k r k
k l

i k r k r l i l, ,
2

<
, ,

(44)

∑σ σ Φ σ σ ΦCov( , ) = Cov( , )r i r j
k l

i k r k r l j l, ,
,

, ,
(45)

according to Eqs. (8) and (9). Table 4 summarizes the spectrum
averaged monitor cross section σr i, with its uncertainty and correlation
coefficient.
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Fig. 2. (a) The point-wise 197Au(n,γ)198Au monitor cross section σ E( )r in the IAEA

Neutron Cross-Section Standards (Carlson et al., 2009) and its group-wise expression
σr k . (b) The

7Li(p,n0)
7Be point-wise neutron flux energy spectrum ϕ E( )i calculated by

EPEN (Pachuau et al., 2017a, 2017b) and its group-wise expression Φi k, (i=1,2; k=1–11

and k=12–15 for i = 1 and 2, respectively).

Table 3
Group-wise neutron flux energy spectrum Φi k, as well as IAEA Neutron Cross-Section Standards (Carlson et al., 2009) group-wise cross section σr k with its uncertainty and correlation
coefficients (×100). k=1–11 and 12–15 are corresponding to the E =n 0.96 and 1.69 MeV neutrons, respectively. The groups are defined by the following boundary energies: 0.675, 0.725,
0.775, 0.825, 0.875, 0.920, 0.950, 0.970, 0.990, 1.050, 1.175, 1.325, 1.500, 1.700, 1.900 and 2.100 MeV (cf. Fig. 2).

i k Φi k, σr k (mb) Correlation coefficient

1 1 5.730E−10 96.45 ± 1.09 100
2 2.746E−05 93.22 ± 1.21 44 100
3 9.641E−03 89.10 ± 0.93 34 52 100
4 1.231E−01 85.87 ± 1.40 20 29 33 100
5 1.975E−01 84.91 ± 1.85 13 12 13 11 100
6 1.314E−01 85.10 ± 1.64 7 13 25 15 9 100
7 8.559E−02 85.36 ± 3.62 3 4 6 10 3 6 100
8 8.430E−02 84.09 ± 2.67 8 6 7 6 44 5 2 100
9 2.438E−01 80.81 ± 0.84 19 15 25 25 20 38 11 12 100
10 1.247E−01 77.33 ± 1.08 16 14 14 13 13 21 7 9 45 100
11 2.884E−07 73.98 ± 0.93 17 16 18 13 12 6 3 12 28 41 100

2 12 1.018E−06 70.84 ± 1.22 12 10 12 9 8 11 7 7 16 17 39 100
13 5.295E−01 66.60 ± 1.00 14 12 14 11 11 11 4 8 19 15 23 35 100
14 4.705E−01 59.99 ± 1.22 10 9 11 8 9 8 7 7 14 11 13 15 37 100
15 3.030E−08 52.12 ± 0.85 12 11 12 9 10 9 4 8 16 13 15 12 25 38 100
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4.1.3. Uncertainty in time factor
Wemeasured the γ-lines of the reaction product 71mZn and monitor

product 198Au simultaneously, and therefore we can set t t t= =c x c r c, ,
and t t t= =m x m r m, , in Eqs. (31) and (33). Then these time factors
contain five sources of uncertainties ti, tc, tm, λr and λx. Among them,
the uncertainties in ti, tc and tm are considered as negligible in this
experimental work, and therefore only the uncertainties in λr and λx
have to be propagated. Some researchers include the uncertainty in the
decay constants in the quadrature sum formula such as

σ σ λ λ λ λ(Δ / ) = ⋯ + (Δ / ) + (Δ / ) + ⋯x x x x r r
2 2 2 , but this is wrong because

the decay constant is related with the cross section through the
exponential function. The correct way is to calculate the uncertainties
in the time factors fx and fr, and propagate them to the uncertainty in
σx by σ σ f f f f(Δ / ) = ⋯ + (Δ / ) + (Δ / ) + ⋯x x r r

2 2 2 . The uncertainties in the
time factors should be propagated from the uncertainties in the decay
constants by

f f s λ λ(Δ / ) = (Δ / )fλ
2 2 2

(46)

( f f= x or fr, and λ λ λ= orx r) with the relative sensitivity sfλ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s λ

f
f
λ

λt e
e

λt
λt e

e
= ∂

∂
=

1 −
− +

1 −
− 1 .fλ

i
λt

λt c
m

λt

λt

−

−

−

−

i

i

m

m (47)

The uncertainty in the decay constant λ T TΔ = (ln 2Δ )/1/2 1/2
2 can be

obtained from TΔ 1/2 in the ENSDF Library. This equation shows that
the sensitivity depends not only on λ but also on ti, tc and tm even
though the uncertainties in the latter three parameters are treated as
negligible. The obtained f fΔ / for 71mZn and 198Au are given in Table 5.
Note that the relative sensitivity coefficient s ∼ 1fλ when λti, λtc and
λt → 0m .

4.1.4. Covariance of measured cross sections
Table 5 summarizes the uncertainties in various parameters to

obtain the 70Zn(n,γ)71mZn cross section. We use Eq. (34) for these
parameters except for replacement of ϵx and ϵr with η, and therefore
we can use the quadratic sum formula to obtain the total uncertainty.
The 22 parameters in Table 5 form the 13 subsets CZn,1, CZn,2,CAu,1,CAu,2,
a a( , )Zn Zn,1 ,2 , n n( , )Zn Zn,1 ,2 , n n( , )Au Au,1 ,2 , I I( , )Zn Zn,1 ,2 , I I( , )Au Au,1 ,2 , f f( , )Zn Zn,1 ,2 ,
f f( , )Au Au,1 ,2 , η η( , )1 2 , σ σ( , )Au Au,1 ,2 . From the uncertainties and correlation
coefficients summarized in Table 5, we can construct the fractional
variance and covariance by adding the matrices of 13 subsets according
to Eqs. (14) and (16):

⎛
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⎞
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⎞
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

7.809 0
0 0

+ 0 0
0 5.988

+ 3.247 0
0 0

+ 0 0
0 2.471

+ 1.381 1.381
1.381 1.381

+ 0.115 0
0 0.088

+ 0.099 0
0 0.097

+ 2.298 2.298
2.298 2.298

+ 0.063 0.063
0.063 0.063

+ 0.177 0.177 × 0.273
0.177 × 0.273 0.273

+ 0.027 0.027 × 0.015
0.027 × 0.015 0.015

+ 0.257 0.257
0.257 0.257

+ 1.043 1.043 × 1.433 × 0.07
1.043 × 1.433 × 0.07 1.433

= 79.924 7.317
7.317 51.377

= 8.94 8.94 × 7.17 × 0.12
8.94 × 7.17 × 0.12 7.17

.

2
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2
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2

2

2

2

2 2

2 2
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2

2

2

2 2

2 2

2

2

2

2

(48)

The last term shows that the total uncertainties in the cross sections are
8.94% and 7.17% at 0.96 and 1.69 MeV, respectively, and also the
correlation coefficient between the two cross sections is 0.12.

4.2. Charged-particle induced activation measurement

A series of measurements have been performed for deuteron and
alpha induced activation cross sections at the AVF cyclotron of the
RIKEN Nishina Center for Accelerator-Based Science (Wako, Japan) by
the University of Malaya in collaboration with RIKEN and IAEA
(Usman et al., 2017; Khandaker et al., 2013a,b, 2014a–c, 2015a,b;
Usman et al., 2016a,b). In these experiments, a number of metallic foils
are stacked and irradiated simultaneously (stacked foil activation). The
energy of the incident particle decreases as the incident particle moves
to the downstream side of the stack, and finally it stops at a foil of the
stack. In our experiments, the front foil (i.e., the foil placed at the most
upstream side of the stack) directly irradiated by the incident particle
extracted from the cyclotron is a titanium foil which serves as a monitor
foil to determine ϕ using monitor reactions such as natTi(d,x)48V and
natTi(α,x)51Cr which cross sections are well established (e.g., Tárkányi
et al., 2001), and we treat the obtained ϕ as a constant through the
whole foil stack. Activities of the irradiated foils were measured by a
coaxial hyperpure germanium detector at various distances between
the irradiated foil and detector.

4.2.1. Uncertainty propagation of the γ-intensity
At an earlier stage of these experiments (Khandaker et al., 2013a,b,

2014a,b, 2015a), we set the following assumption in our uncertainty
propagation:

• 5% for the uncertainty in ϕ (originated from the uncertainties in σr,
Cr, nr, ϵr, Ir),

• 4% for the uncertainty in ϵx,

• 1% for uncertainties in nx and Ix,

• uncertainties in other parameters (except for Cx) are negligible.

Table 4
Spectrum averaged monitor cross section, its uncertainty and correlation coefficients
(×100).

i En (MeV) σr i, (mb) Correlation coefficient

1 0.96 82.77 ± 0.86 100
2 1.69 64.09 ± 0.92 7 100

Table 5
Fractional uncertainties (%) in various parameters to obtain the 70Zn(n,γ)71mZn cross section.

i En (MeV) σΔ (%)

CZn CAu aZn nZn nAu IZn IAu fZn fAu η σAu Total

1 0.96 7.809 3.247 1.381 0.115 0.099 2.298 0.063 0.177 0.027 0.257 1.043 8.94
2 1.69 5.988 2.471 1.381 0.088 0.097 2.298 0.063 0.273 0.015 0.257 1.433 7.17
Correlation 0 0 1 0 0 1 1 1 1 1 0.07 0.12
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However we realized that the uncertainty in Ix strongly depends on the
selected γ-line (from ∼0.001% to ∼10%). The source of Ix adopted in our
experiments (ENSDF Library, Bhat, 1992) also provides IΔ x, and we
started to propagate the uncertainty determined by the ENSDF
evaluators (Usman et al., 2016a,b, 2017) instead of 1% uncertainty
in our recent works. Fig. 3 shows an impact due to adoption of the

I IΔ /x x determined by the ENSDF evaluators. In this figure, the
natNi(d,x)61Cu cross section measured by us (Usman et al., 2016a) by
counting the 656 keV γ-line (I = 0.108x γ/decay, Zuber and Singh,
2015) is compared with those recommended by Hermanne et al. (2013)
and Takàcs et al. (2001). The shorter and longer error bars are
respectively corresponding to adoption of our conventional uncertainty

I IΔ / = 1%x x and of the uncertainty evaluated by the ENSDF evaluators
( I IΔ / = 18.519%x x , Zuber and Singh, 2015). This figure shows that the
cross sections measured by us become more consistent with the cross
section recommended by Hermanne et al. by adoption of IΔ x deter-
mined by the ENSDF evaluators.

4.2.2. Deviation from quadratic sum formula
Sometimes we have to combine the numbers of counts for two γ-

lines to obtain the cross section of interest. Such an example is seen in
our determination of the natTi(α,x)44gSc cross section (Usman et al.,
2017). Fig. 4 shows the decay scheme of 44gSc and 44mSc. The natTi(α,
x)44mSc cross section σm i, was simply determined from the number of
counts for 271 keV γ-line C i271, (I = 0.867271 γ/decay, Chen et al., 2011):

σ
C

nϕ I f
=

ϵ
,m i

i

m
,

271,

271 271 (49)

(i=1,4 for E = 51α , 48, 44 and 39 MeV) with ϕ determined by
measurement of the 320 keV γ-line from natTi(α,x)51Cr monitor reac-
tion:

ϕ
σ

C
n I f

= 1
ϵ

.
r

r

r r r (50)

Note that titanium foils with the same thickness are used for
determination of both σx and ϕ, and therefore we set n n n= =x r . Eq.
(49) has a functional form of Eq. (10), and therefore we can apply the
quadratic sum formula (Eq. (12)) to all parameters of this equation.

The situation is complicated for the natTi(α,x)44gSc cross section σg i, ,
for which the 1157 keV γ-line is only strong one available for observa-
tion of the ground state. However this γ-line is emitted by both ground
and metastable states (I = 0.999g1157, γ/decay and I = 0.0120m1157, γ/
decay), and these states are connected by the isomeric transition
b( = 0.988)IT (Chen et al., 2011). The number of counts for 1157 keV
γ-line C i1157, is decomposed to three components:

⎡
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, IT 1157,
(51)

where the first term is for emission from the directly produced ground
state, the second term is for emission from the metastable state, and
the third term is for emission from the ground state originated from the
isomeric transition of the metastable state. By solving this equation in
terms of σg i, and combining it with Eq. (49), we obtain σg i, as a function
of C i271, and C i1157, :
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This equation shows that we have to propagate uncertainties in the 10
parameters x n ϕ C C I I I b{ } = { , , ϵ , ϵ , , , , , , }k i i g m1157 271 1157, 271, 1157, 1157, 271 IT
summarized in Table 6 to the uncertainty in σg i, . Assuming that these
parameters at a given energy are independent of each other, we can use
Eq. (18) to propagate the uncertainty in xk to σg i, , where the explicit
forms of the relative sensitivity coefficients sik are

n σ σ n ϕ σ σ ϕ

σ σ αβ σ σ σ α σ γ δ

C σ σ C α σ β

C σ σ C α σ γ δ

I σ σ I α σ β γ

I σ σ I α σ γ

I σ σ I α σ γ δ b σ σ b α σ δ

( / )(∂ /∂ ) = 1, ( / )(∂ /∂ ) = 1,

(ϵ / )(∂ /∂ϵ ) = − / , (ϵ / )(∂ /∂ϵ ) = ( / )( + ),

( / )(∂ /∂ ) = ( / ) ,

( / )(∂ /∂ ) = − ( / )( + ),

( / )(∂ /∂ ) = − ( / )( − ),

( / )(∂ /∂ ) = − ( / ) ,

( / )(∂ /∂ ) = ( / )( + ), ( / )(∂ /∂ ) = − ( / ) .

g i g i g i g i

g i g i g i g i g i g i

i g i g i i g i

i g i g i i g i

g g i g i g g i

m g i g i m g i

g i g i g i g i g i g i

, , , ,

1157 , , 1157 , 271 , , 271 ,

1157, , , 1157, ,

271, , , 271, ,

1157, , , 1157, ,

1157, , , 1157, ,

271 , , 271 , IT , , IT ,

Table 6 shows that the quadratic sum formula is valid (i.e., s = 1ik )
for two parameters n and ϕ as it is obvious from Eq. (52). We also can
see that the parameters for the 1157 keV γ-line are slightly more
sensitive (∼1.2) than those in the quadratic sum formula, while those
for the 271 keV γ-line have little influence (∼0.2) on the total
uncertainty. If we wrongly apply the quadratic sum formula to all
parameters, the total uncertainty of σg i, is ∼7.81% at all α energies,
which is almost determined by the four parameters having the largest
fractional uncertainties (n, ϕ, ϵ1157 and ϵ )271 . Correct uncertainty
propagation gives the smaller total uncertainty due to the small
sensitivity of ϵ271 except for one data point at 39 MeV where the
correct uncertainty propagation gives a larger uncertainty than the use
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Fig. 3. Excitation functions of natNi(d,x)61Cu determined by detection of the 656 keV γ-
line (Usman et al., 2016a) with two error bars (shorter error bars obtained with

I IΔ / = 1%γ γ , and longer error bars obtained with I IΔ / = 18.519%γ γ , Zuber and Singh,

2015). The data sets recommended by Hermanne et al. (2013) and Takàcs et al. (2001)
are also plotted.
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Fig. 4. Decay scheme of 44gSc (3.97 h) and 44mSc (58.6 h).
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of the quadratic sum formula because of the large uncertainty in C i1157, .
Table 7 summarizes the total and partial uncertainties in σg i, at four α
energies.

4.2.3. Correlation between cross sections at two energies
So far we considered all parameters to obtain the 44mSc and 44gSc

production cross sections are independent at a given α energy.
However correlation of some parameters must be considered if we
study the relation of cross sections at the four α energies. For example,
uncertainty propagation of 44mSc production cross sections obtained by
Eq. (49) at the four α energies involves 20 parameters which are C i271, ,
n n( = )i , ϕ ϕ( = )i , ϵ ( = ϵ )i271, 271 , I I( = )i271, 271 with i=1,4. They are pro-
pagated to the variance and covariance of the cross section by

σ C n ϕ I

C n ϕ I

var( ) = var = ( ) + var( ) + var( ) + var(ϵ ) + var( )

= var( ) + var( ) + var( ) + var(ϵ ) + var( ),
m i i i i i i

i

, 271, 271, 271,

271, 271 271 (53)

σ σ n n ϕ ϕ

I I n ϕ I

cov( , ) = cov( , ) + cov( , ) + cov(ϵ , ϵ )

+ cov( , ) = var( ) + var( ) + var(ϵ ) + var( )

= 2 + 5 + 4 + 0.35 ∼ 45(% )

m i m j i j i j i j

i j

, , 271, 271,

271, 271, 271 271

2 2 2 2 2

i j( ≠ ) (54)

according to Eqs. (13) and (14). By using σ σ σΔ / = var( )m i m i m i, , , in

Table 7, these fractional variance and covariance are summarized as
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and the corresponding correlation coefficients are
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⎞

⎠

⎟⎟⎟

1
45/6.82/6.82 1
45/6.82/6.87 45/6.82/6.87 1
45/6.82/7.20 45/6.82/7.20 45/6.87/7.20 1

.

(56)

The above example shows that the construction of the covariance
matrix is relatively easy when only uncorrelated and fully correlated
uncertainties in the parameters are propagated by the quadratic sum
formula, and especially the fractional values of the fully correlated
uncertainties are the same at all data points.

A possible improvement in the error propagation discussed above is to
consider the correlation between the detection efficiencies of the 271 keV γ-
line from the reaction product 44mSc (ϵ271) and of the 320 keV γ-line from
the monitor product 51Cr (ϵ320). If we propagate the uncertainty in ϵ320
explicitly by considering its correlation with ϵ271 instead of inclusion of the
uncertainty in ε320 in the assumed constant uncertainty in ϕ (5%), there
might be a major change in the contribution of the uncertainties in these
detection efficiencies to the total uncertainty because their γ-lines are
relatively close. The full publication of the experiment (Usman et al., 2017)
will also report the natTi(α,x)51Cr cross sections for which the uncertainty in
the detection efficiency should disappear because the same reaction is also
used as a monitor reaction to determine ϕ, and ϵx and ϵr of Eq. (34) cancel
each other. See also the discussion on Fig. 1(b) of Section 4.1.1 for the
treatment of the correlation between detection efficiencies.

5. Conclusions

We have discussed examples of uncertainty propagation for neutron
and charged-particle activation cross section measurements in detail
following introduction of basic concepts and uncertainty propagation
formulae as well as importance of detailed documentation of the
uncertainty. Our two examples show that we need not only the total
uncertainty but also partial uncertainties and their correlation proper-
ties of each data point to obtain the covariance information of the
activation cross sections.

The actual data reduction equation of our neutron activation cross
sections has correction factors to take into account various effects (e.g.,
contribution of 7Li(p,n1)

7Be low energy (parasitic) neutron capture,
capture of neutron scattered by the sample and surrounding materials,
absorption of γ-rays by the sample materials before detection). These
correction factors are omitted in Eq. (34), and we did not evaluate their
uncertainties. It is not realistic to evaluate the uncertainties of all
parameters included in the data reduction equation, and the propaga-
tion formulae show the importance to identify the parameters which
have major contributions to the uncertainty propagation, and to
estimate their uncertainties and correlation properties carefully.
Some web sites maintained by the IAEA NDS (e.g., Verpelli and

Table 6
Parameters (xk) for determination of natTi(α,x)44gSc at four α energies σg i, (i=1,4) (Usman
et al., 2017) with their fractional (%) uncertainties x xΔ /k k and relative sensitivity
coefficients sik. The parenthesized energies in MeV give the incident α energies. The
italicized fractional uncertainties are empirically determined values. The symbol ∼ shows
that the sik value slightly depends on the incident α energy. “Neg.” means that the
uncertainty in the parameter is considered as negligible.

Parameter xk x xΔ /k k (%) sik

n 5.88E−8 atoms/mb 2 1.0
ϕ 5.45E+11 α/sec 5 1.0
ϵ1157 0.001204 4 ∼−1.2
ϵ271 0.004273 4 ∼0.2
C i1157, 9053 (51 MeV) 1.05 1.2

8251 (48 MeV) 1.10 1.2
5405 (44 MeV) 1.36 1.2
1473 (39 MeV) 2.61 1.3

C i271, 7245 (51 MeV) 1.17 −0.2

6977 (48 MeV) 1.20 −0.2
4786 (44 MeV) 1.45 −0.2
1498 (39 MeV) 2.58 −0.3

I g1157, 0.999 γ/decay 0.40 ∼1.2
I m1157, 0.012 γ/decay 5.83 0.0

I271 0.867 γ/decay 0.35 ∼0.2
bIT 0.988 0.07 ∼−0.2
ti 7200 s Neg.
tm 200 s Neg.
tc 15 240 s (51 MeV) Neg.

14 880 s (48 MeV) Neg.
14 520 s (44 MeV) Neg.
14 220 s (39 MeV) Neg.

λg 4.85E−05 1/s Neg.
λm 3.29E−06 1/s Neg.

Table 7
natTi(α,x)44g,mSc cross sections and their uncertainties (Usman et al., 2017). Partial uncertainties are also given for 44gSc production cross sections.

i Eα (MeV) σg i, (mb) σΔ g i, (%) σm i, (mb) σΔ m i, (%)

Total n ϕ ϵ1157 ϵ271 C i1157, C i271, I g1157, I m1157, I271 bIT Total

1 51 7.03 7.36 2.00 5.00 4.77 0.77 1.25 0.23 0.48 0.02 0.07 0.01 13.72 6.82
2 48 6.24 7.40 2.00 5.00 4.81 0.81 1.32 0.24 0.48 0.02 0.07 0.01 13.20 6.82
3 44 3.99 7.50 2.00 5.00 4.84 0.84 1.65 0.30 0.48 0.02 0.07 0.01 9.05 6.87
4 39 1.04 8.13 2.00 5.00 4.98 0.98 3.25 0.64 0.50 0.03 0.09 0.02 2.83 7.20
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Abriola, 2011; Zerkin and Trkov, 2008) provide friendly interfaces for
extraction of the uncertainties in various nuclear data originally
compiled in complicated formats.
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