CrossMark

Measurement and covariance analysis of 232 Th(n, 2n)²³¹Th reaction cross sections at the effective neutron energies of 8.97 and 16.52 MeV

Meghna Karkera¹ • Haladhara Naik² • Sripathi Punchithaya³ • Manjunatha Prasad¹ • Santhi Sheela Yeraguntla¹ • Saraswatula Venkata Suryanarayana⁴ · Srinivasan Ganesan⁵ · Vibha Vansola⁶ · Rajnikanth Makhwana⁶

Received: 22 June 2018 / Published online: 5 October 2018 © Akadémiai Kiadó, Budapest, Hungary 2018

Abstract

The ²³²Th(n, 2n)²³¹Th reaction cross sections relative to the ²³²Th(n, f)⁹⁷Zr monitor reaction at the effective neutron energies of 8.97 and 16.52 MeV have been measured by using the activation and off-line γ -ray spectrometry. The neutron beams were generated from the ${}^{7}Li(p, n)$ ⁷Be reaction by using the proton beam energies of 11 and 18.8 MeV. Correction factors for the low energy neutrons were taken care by considering the thickness of sample and non mono-energetic neutrons. The covariance analysis in the uncertainty of the reaction cross section was carried out by using error propagation and micro-correlation technique. The present data were compared with the literature data, evaluated data and theoretical values based on TALYS-1.8 code.

Keywords ²³²Th(n, 2n)²³¹Th reaction cross sections \cdot ⁷Li(p, n)⁷Be reaction neutrons \cdot Activation and off-line γ -ray spectrometry - Covariance analysis - TALYS-1.8 code

Introduction

India has a continuing programmatic interest in basic nuclear data science related to ²³²Th–²³³U fuel cycle [\[1](#page-6-0)]. This is because 232 Th– 233 U fuel has a great potential to serve as a significant source of low carbon electricity in India. Thorium can also be utilized as a part of viable energy mix of options designed to last for several centuries.

& Haladhara Naik naikhbarc@yahoo.com

- ¹ Department of Statistics, Manipal Academy of Higher Education, Manipal 576104, India
- ² Radiochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- ³ Department of Physics, National Institute of Engineering, Mysuru 570008, India
- ⁴ Nuclear Physics Division, Bhabha Atomic Research Center, Mumbai 400085, India
- ⁵ DAE, Bhabha Atomic Research Centre, Mumbai 400085, India
- ⁶ Maharaja Sayajirao University of Baroda, Vadodara 390002, India

Developments of reactor design for the utilization of 232 Th 233 U fuel in the Advanced Heavy Water Reactor [\[2](#page-6-0), [3](#page-6-0)] demands new nuclear data [\[4](#page-6-0)] for all the isotopes of 232 Th– 233 U fuel cycle. As compared to 238 U and 239 Pu based fuels, the isotopes 232 Th and 233 U require several sequential captures of neutrons to form transactinide isotopes such as the isotopes of Pu, Am and Cm etc. Thus, the production of transactinide wastes in pure 232Th–233U based fuel is several orders of magnitude smaller than in 238 U 239 Pu based fuel. The 232 U nuclide of concern in fuel cycle is produced dominantly via the $232 \text{Th}(n, 2n)$ reaction route of thorium rods in thermal, fast, fusion and accelerator driven sub-critical systems (ADSs) [\[5](#page-6-0)]. A discussion of production routes of 232 U, and the important role of 232 U in 232 Th 233 U fuel cycle, and concerns, are discussed in the literature [\[6](#page-6-0)], and are not reproduced here to save space.

The experimental 232 Th(n, 2n)²³¹Th reaction cross sections data measured by various researchers within the neutron energies of 6–20 MeV are compiled in EXFOR library [[7,](#page-6-0) [8\]](#page-6-0). Overall 102 data points are available in the literature during the time of writing this paper. These data show that the $^{232} \text{Th}(n, 2n)^{231}$ Th reaction cross-section increases from the threshold value and reaches a peak

around the neutron energy of 11 MeV. There after it decreases up to the neutron energy of 20 MeV [\[9–27](#page-6-0)].

In the present work, we measured the $232 \text{Th} (n, 2n)$ ²³¹Th reaction cross sections at the effective neutron energies of 8.97 and 16.52 MeV by using an activation method and off-line γ -ray spectrometric technique. We have used relative method, as described in Refs. $[28, 29]$ $[28, 29]$ $[28, 29]$ $[28, 29]$, where ^{97}Zr fission product from the ²³²Th(n, f) reaction was taken as neutron flux monitor. We also present the covariance analysis of the experimental data by considering the partial uncertainties in various attributes and the correlations between those attributes. In Indian context, the covariance analysis of nuclear data presented in this paper are motivated by our programmatic interest [\[30](#page-6-0)]. More details on the data sets of the attributes used in the covariance analysis are available in the unpublished internal document [\[31](#page-6-0)] based on Refs. [\[28](#page-6-0), [29](#page-6-0)] and are not reproduced here to save the space.

Experimental details

The experiment was carried out by using the 14 UD BARC-TIFR (Bhabha Atomic Research Centre-Tata Institute of Fundamental Research) Pelletron facility at Mumbai, India [\[32](#page-6-0)]. The neutron beam was produced by using the ${}^{7}Li(p, n)$ ⁷Be reaction with the proton beam energies of 11 and 18.8 MeV in the main line at 6 m above the analyzing magnet of the Pelletron facility to utilize maximum proton current from the accelerator. The incident proton current during the irradiation at 11 MeV and 18.8 MeV proton energies were 120 nA and 220 nA, respectively. A collimator of 6 mm diameter was used before the lithium target. The natural lithium foil of thickness 7.8 mg/cm² was sandwiched between two tantalum foils of different thicknesses. The front tantalum foil facing the proton beam was 3.2 mg/cm^2 thick. The degradation of proton energy according to SRIM code [[32\]](#page-6-0) due to Tantalum and Lithium foils were 39–56 keV and 78–276 keV, respectively. The back tantalum foil of thickness 41 mg/cm² was used to stop the proton beam. A schematic diagram of experimental setup used in the present irradiations is shown in Fig. 1.

The neutron energy (E_n) due to the ⁷Li(p, n)⁷Be reaction was obtained by using the kinematic relation $E_n = E_P - E_{Th}$. E_P and E_{th} are the incident proton energy and the threshold energy of the 7 Li (p, n) ⁷Be reaction. For the proton beams of energy higher than 2.4 MeV, the emerging neutrons are not mono-energetic due to the excited states of beryllium. Thus, the effective neutron energy for each of the two proton energies is obtained by taking the average of the one given by the kinematic

Fig. 1 A schematic diagram of experimental setup used for the irradiations

relation and the other given by considering the primary group of neutrons in the neutron spectra taken from Refs. [\[33](#page-6-0), [34\]](#page-7-0). By considering the errors in the neutron energy obtained by kinematic relation and based on the neutron spectrum, the error in the effective neutron energy was propagated. The details of computation are given in the internal document [\[31](#page-6-0)] based on Refs. [[20,](#page-6-0) [28\]](#page-6-0). The respective effective neutron energies with reference to the proton energies of 11 and 18.8 MeV are found to be 8.97 \pm 0.34 and 16.52 \pm 0.30 MeV, respectively.

Two thorium metal foils of purity more than 99.99.99% weighing 0.9005 ± 0.0003 and 0.3955 ± 0.0003 g were wrapped with aluminum foils of thickness 0.025 mm to prevent radioactive contamination from the samples to surrounding. The aluminum wrapped thorium samples were then mounted one at a time at an angle of 0° with respect to the proton beam's direction at a distance of 2.1 cm behind the Ta–Li–Ta stack. The stacks in sequence were irradiated one at a time with effective neutron energies of 8.97 and 16.52 MeV for the duration of 16.08 and 5 h, respectively. The irradiated foils of thorium from two stacks were then cooled for 34.96 and 69.1 h, respectively and then mounted separately on different Perspex plates. The fission product, $\frac{97}{2}$ r produced in the $\frac{232}{2}$ Th(n, f) reaction was used as neutron flux monitor in both the irradiations.

Gamma ray counting of the irradiated foils was performed by using a pre-calibrated 80-cc High Purity Germanium detector coupled to a PC-based 4096 channel analyzer. The counting dead time was always kept lesser than 5% by placing the irradiated thorium samples at a distance of 1 cm from the end cap of the detector. The energy and efficiency calibration of the detector system were performed by using standard 133 Ba and 152 Eu sources, keeping the same geometry. The details of calibration and model detection are provided in the unpublished internal document [\[31](#page-6-0)] based on Refs. [[28,](#page-6-0) [29\]](#page-6-0).

Data analysis and results

In the present work, the cross sections of $^{232}Th(n, 2n)^{231}Th$ reaction at the effective neutron energies of 8.97 and 16.52 MeV were measured by using the following equation.

the foils were determined by using the expression, $\Gamma_{\text{attn}} = \frac{1-e^{-\mu l}}{\mu l}$, where l is the thickness of the sample and μ is mass attenuation coefficient obtained from XMuDat Ver. 101 [[36,](#page-7-0) [37\]](#page-7-0).

$$
\sigma_U = \sigma_M.Y. \frac{C_U \lambda_U W t_M ab n_M Av_U(I_\gamma)_M \varepsilon_{\gamma(M)} (1 - e^{-\lambda_M t_{irr_M}}) (e^{-\lambda_M t_{cool_M}}) (1 - e^{-\lambda_M t_{c_M}})}{C_M \lambda_M W t_U ab n_U Av_M(I_\gamma)_U \varepsilon_{\gamma(U)} (1 - e^{-\lambda_U t_{irr_U}}) (e^{-\lambda_U t_{cool_U}}) (1 - e^{-\lambda_U t_{c_U}})} \prod_k \frac{(C_k)_M}{(C_k)_U}
$$
(1)

where $\sigma_U(E_n)$ and $\sigma_M(E_n)$ denote cross section of $232 \text{Th} (n, 2n)$ ²³¹Th reaction and cross section of the ²³²Th(n, f) reaction at the neutron energy E_n , respectively, Y denotes yield of $97Zr$ fission product in the $232Th(n, f)$ reaction, C_U and C_M denotes the detected γ -ray peak counts of the reaction product 231 Th and fission product ^{97}Zr , respectively, λ_U , λ_M denote decay constants of the product nuclides ²³¹Th and ⁹⁷Zr, respectively, $\varepsilon_{\gamma(U)}$, $\varepsilon_{\gamma(M)}$ denote efficiency of detector corresponding to characteristic γ -rays of the product nuclides 231 Th and ^{97}Zr , respectively, Wt_U and Wt_M are the same and denote weights of ²³²Th, abn_U and abn_M are the same and denote isotopic abundances of the ²³²Th, Av_U , Av_M are the same and denote average atomic mass of ²³²Th, $(I_y)_U$ and $(I_y)_M$ denote γ ray abundances of the ²³¹Th and ⁹⁷Zr. t_{irr} , t_{cool} and t_c denote the irradiation time, cooling time and counting time of the samples. $(C_k)_{U}$ and $(C_k)_{M}$ denote the correction factors of sample and monitor reactions, respectively for the kth attribute, where k represents the dead time of the detector $\left(\frac{\text{Clocktime}}{\text{Live time}}\right)$, low energy neutron contribution (α) and γ -ray self-attenuation factor (Γ_{attn}). The correction term, α is obtained following the approach given originally by Smith et al. [[35\]](#page-7-0) and used in our team's earlier work by Shivashankar et al. [[28](#page-6-0)] and Yerraguntla et al. [\[29](#page-6-0)]. It may be noted that

$$
\alpha_i = \left(1 + \frac{\sum_{p_2} \Phi(E_{P_2}) \sigma_i(E_{P_2}) + \int_0^{E_{\text{max}}} \varphi(E) \sigma_i dE}{\sum_{p_1} \Phi(E_{P_1}) \sigma_i(E_{P_1})}\right), \quad (2)
$$

where Φ represents the flux corresponding to discrete peaks, and φ is the continuum with reference to the neutron spectra. E_{P_1} , E_{P_2} represent the neutron energies corresponding to higher and lower energy neutron peaks. E corresponds to much lower energy tail part of the neutron spectra. The self-attenuation factor $(\Gamma_{\text{attn}})_i$; $i = U, M$; of

Efficiency calibration, model detection and estimation of efficiency of HPGe detector

Standard point sources of 133 Ba and 152 Eu were used for energy-efficiency calibration and placed at a distance of 1 cm from the end cap of the High Purity Germanium Detector. The efficiencies corresponding to the characteristic γ -ray energies of ¹³³Ba and ¹⁵²Eu were obtained by using the following equation.

$$
\varepsilon_{\gamma} = \frac{CK_{\rm c}}{A_{o}ae^{\frac{-0.693r}{l_{1/2}}}}
$$
\n(3)

where ε_{γ} , C, K_c, a, A_o, $t_{1/2}$ and t denotes efficiency of the detector, detected γ -ray counts under the photo-peak per second, correction factor for the coincidence summing effect, branching factor or γ -ray abundance, activity at the time of source calibration, half-life of radioactive nuclide, time elapsed between calibration at the time of packing and at the time of the experiment.

The experimental data (C) , simulated data (K_c) and auxiliary data A_0 , a and $t_{1/2}$ at 11 gamma lines of ¹³³Ba and 152 152 Eu are presented in Table 1. The counts C was obtained by using γ -ray spectrometry. Counting time for ¹³³Ba and 152Eu standard sources were 1500 and 2400 s, respectively. The coincidence summing correction factor (K_c) was obtained by using the Monte Carlo simulation code EFF-TRAN [[38\]](#page-7-0). The data for A_0 was supplied by the manufacturer. The decay data for γ -ray abundance and half-life were taken from NuDat [[39\]](#page-7-0).

Using the uncertainty data for C, A_o , a and $t_{1/2}$ and ascribing micro-correlations between them the covariance matrix V_{ε} for 11 observations was propagated. We further obtain linear parametric function ln $\varepsilon = 4.03$ – $0.90(\ln E) + 0.16(\ln E)^{-2} - 0.04(\ln E)^{-3} - 0.068(\ln E)^{-4}$ as energy-efficiency model with $\frac{\chi^2}{11-5} = 1.72$ (nearest to 1

Table 1 Efficiency calibration data of detector using standa sources 133 Ba and 152 Eu

1896 Journal of Radioanalytical and Nuclear Chemistry (2018) 318:1893–1900

Table 2 Interpolated detector

among all those $\frac{\chi^2}{df}$ obtained for different models considered with different linear parametric functions). For more details on covariance analysis and model detection, refer to Refs. [\[28](#page-6-0), [29](#page-6-0), [31\]](#page-6-0). Further, the efficiency of detector at characteristic y-ray energy corresponds to ²³¹Th and ⁹⁷Zr (84.2) and 743.3 keV, respectively) were obtained by interpolation technique, whereas the covariance information for these measurements was obtained by propagation technique. We present the relevant data in Table 2.

Estimation of $232Th(n, 2n)^{231}$ Th reaction cross section with covariance analysis

Among the attributes mentioned in Eq. (1) (1) , the attributes measured with error are $\sigma_M(E_n)$, C_U , C_M , λ_U , λ_M , Av_M, Av_U, W_U, W_U, $(V_1)_{U}$, $(I_2)_{m}$, $\varepsilon_{\gamma(U)}$, $\varepsilon_{\gamma(M)}$, $(T_{\text{attn}})_{U}$, $(T_{\text{attn}})_{M}$, Y. Other attributes namely, t_{irr} , t_{cool} and t_c given in Eq. ([1\)](#page-2-0)

Table 3 Decay data of radio-nuclides required for estimating $\sigma_U(E_n)$

	Isotope Half-life (h)	γ -ray abundance	Isotopic abundance
^{97}Zr	16.749 ± 0.008	0.9309 ± 0.0016	
231 Th	24.52 ± 0.01	0.066 ± 0.004	

are observed without error and treated as constants. Basic decay data of the attributes required to determine cross section are presented in Table 3. The data for yields with error (0.049195 \pm 0.003955 and 0.04495 \pm 0.004186) were taken from Refs. [\[40–42](#page-7-0)].

The cross sections for the $232Th(n,f)$ reaction was obtained from ENDF/B-V111.0 and then interpolated to obtain cross section at neutron energies of our interests, namely, 8.97 and 16.52 MeV. The data with necessary covariance information is given Table [4](#page-4-0).

The cross sections of $^{232}Th(n, 2n)^{231}Th$ reaction at the neutron energies of 8.97 and 16.52 MeV were obtained by substituting the basic data of the attributes in Eq. ([1\)](#page-2-0) and presented in Table [6](#page-4-0). The covariance matrix associated with these two measurements are obtained by considering the observations of all the attributes and their covariance information. The covariance matrix V_{σ_U} is given by

$$
(V_{\sigma_U})_{ij} = \sum_{kl} (e_k)_i (e_l)_j (s_{kl})_{ij}, \quad 1 \le i, j \le 2, \ 1 \le l, \ k \le 16
$$
\n⁽⁴⁾

where σ_{Ui} is a vector consisting of two entries with the measurements of $232 \text{Th}(n, 2n)$ 231Th reaction cross sections at the neutron energies of 8.97 and 16.52 MeV

 $(e_k)_i = \frac{\partial \sigma_{U_i}}{\partial (x_k)_i} \Delta (x_k)_i$ is the partial uncertainty in σ_{U_i} due to the k th attribute amongst the list given above, $(e_k)_j =$

^aCorrelation value is given Table 4

 $\mathfrak{d} \sigma_{\mathbf{U} \mathbf{j}}$ $\frac{\partial \mathbf{v}_{Uj}}{\partial (\mathbf{x}_k)_j}$ $\Delta (\mathbf{x}_k)_j$ is the partial uncertainty in σ_{Uj} due to the *l* th attribute amongst the list given above, $(s_{kl})_{ii}$ is the microcorrelation between i th observation due k th attribute and j th observation *th attribute. For the detailed derivation of* Eq. [\(4](#page-3-0)) with necessary description, the readers can referred to reference by Santhi Sheela et al. [\[43](#page-7-0)]. The partial uncertainties in σ_U due to each of the sixteen attributes appearing in Eq. [\(1](#page-2-0)) are obtained as in the description of Eq. [\(4](#page-3-0)) and the same is presented in Table 5.

The observations between any pair attributes appearing in Eq. ([1\)](#page-2-0) are independent of each other except for the pairs of attributes $(\epsilon_{\gamma(U)}, \epsilon_{\gamma(M)})$, (Av_U, Av_M) and (Wt_U, Wt_m) respectively, where $\cot(\epsilon_{\gamma(U)}, \epsilon_{\gamma(M)}) = 0.1452$, $\text{cor}(\mathbf{A}\mathbf{v}_{\mathbf{U}}, \mathbf{A}\mathbf{v}_{\mathbf{M}}) = 1$ and in the case of the attribute Wt and at given neutron energy, the correlation between the observation of Wt_U , and the observation of Wt_M is one. The observations of attributes C_U, C_M , Wt_U, Wt_M,

 $(\Gamma_{\text{attn}})_{U}$, $(\Gamma_{\text{attn}})_{M}$, and Y with reference to different neutron energies are independent, therefore the corresponding micro-correlation matrices are identity matrices of size two. For each of the attributes λ_U , λ_M , $A v_M$, $A v_U$, $(I_{\gamma})_U$, $(I_{\gamma})_M$, $\varepsilon_{\gamma(U)}$, $\varepsilon_{\gamma(M)}$ the micro-correlation matrices for observation correspond to sample and observation correspond to monitor are identical and equal to J matrix of order 2 with all entries equal to one. Table 6 presents the covariance matrix of σ_{U} .

Discussion

In the present study, the cross sections of $232 \text{Th}(n, 2n)$ 231Th reaction were measured relative to the ²³²Th(n, f)⁹⁷Zr monitor reaction at the effective neutron energies of 8.97 and 16.52 MeV by using activation and off-line γ -ray

spectrometric technique. For comparison, we present our current data in Fig. 2 along with other data available in the literature $[9-27]$ from EXFOR $[7, 8]$ $[7, 8]$ $[7, 8]$ $[7, 8]$ $[7, 8]$. In the same figure, we have also plotted the evaluated data curves from the ENDF/B-VIII.0 [\[44](#page-7-0)], JENDL 4.0 [\[45](#page-7-0)], JEFF-3.2 [[46\]](#page-7-0) and ROSFOND [\[47](#page-7-0)] libraries. It can be seen from Fig. 2 that our measurements of the $^{232}Th(n, 2n)^{231}Th$ reaction cross section at the neutron energy of 8.97 MeV is found to be in good agreement with all the evaluated data from different libraries [\[44–47](#page-7-0)]. However, the measurement at the neutron energy of 16.52 MeV is in between the evaluated curves given by ENDF/B-VIII.0 [[44\]](#page-7-0), which coincides with JEFF-3.2 and the rest [[45–47\]](#page-7-0).

Further, Fig. 2 shows that within the neutron energies of 9–13 MeV, there are large variations among the literature data $[9-27]$. Some of the literature data are significantly lower than the evaluated data of different libraries [\[44–47](#page-7-0)]. In view of this, the $^{232}Th(n, 2n)^{231}$ Th reaction cross section was theoretically calculated by using the TALYS-1.8 code [\[48](#page-7-0)]. TALYS is a computer code [[48\]](#page-7-0), which can be used to calculate the reaction cross-section based on physics models and parameterizations. It calculates nuclear reactions involving targets with mass larger than 12 amu and projectiles like photon, neutron, proton, ²H, ³H, ³He and alpha particles in the energy range from 1 keV to 200 MeV. In the present work, we have used neutron as a projectile and ²³²Th as a target. We have used the neutron energy from the threshold value of 232 Th(n, 2n)²³¹Th reaction (i.e. 6.4682 MeV) up to 20 MeV. The calculation of 232 Th(n, 2n) reaction cross-section was done by using the default parameters. Theoretically calculated 232 Th(n, $(2n)^{231}$ Th reaction cross sections are plotted in Fig. 2.

It can be seen from Fig. 2 that the curve from TALYS follows a similar trend of experimental data and evaluated data. However, there is a right shift of the theoretical values compared to the evaluated data. Thus within the neutron energies of 9–13 MeV, the values from TALYS are passing through the middle of scattered experimental data. Below the neutron energies of 13 MeV, the data from TALYS are lower than the evaluated data. On the other hand, it is slightly higher than the evaluated data above the neutron energy of 15 MeV. In spite of these differences, a general increase trend of 232 Th(n, 2n)²³¹Th reaction crosssection from the threshold values to a maximum value around the neutron energy of 11–13 MeV is clearly seen for theoretical and evaluated data. However, the experimental data around the neutron energies of 11–13 MeV are very much limited and are lower than both the theoretical and evaluated data, which suggest the experimentalist for its redetermination. Above the, neutron energy of 13 MeV, the $(n, 2n)$ reaction cross-section of 232 Th decreases due to the opening of other reaction channels, which indicates the shearing of energy in different channels.

Conclusion

The 232 Th(n, 2n)²³¹Th reaction cross sections relative to the ²³²Th(n, f)⁹⁷Zr monitor reaction at the average neutron energies of 8.97 and 16.52 MeV have been measured by using the activation and off-line γ -ray spectrometric technique. The neutron beams were generated from the 7 Li(p, n)⁷Be reaction by using the proton beam energies of 11 and 18.8 MeV. Correction factor accounting for low energy neutrons were used for the measurement by considering the thickness of sample and non mono-energetic neutrons from the accelerator. The efficiency of detector was determined by using 152 Eu and 133 Ba standard sources after taking care of coincidence summing effect. Least square method was employed to obtain the energy-efficiency model and γ -ray self-attenuation correction. The uncertainties of all the attributes for the cross section were taken care except the time factor. The covariance analysis in the uncertainty of the reaction cross section was carried out by using error propagation and micro-correlation technique. The 232 Th(n, 2n)²³¹Th reaction cross section as a function of neutron energy was also theoretically calculated by using TALYS-1.8 code with default parameters. The present data were compared with the literature data, evaluated data of ENDF/B-VIII.0, JENDL 4.0, JEFF-3.2 and ROSFOND libraries as well as with the theoretical values from TALYS-1.8 code and found to be in general agreement.

Acknowledgements The research work was supported by DAE-BRNS project (Sanction No. 36(6)/14/52/2014-BRNS/2708). The authors would like to thank the staff of BARC-TIFR Pelletron facility

for their kind co-operation in providing the proton beam to carry out the experiment.

References

- 1. Ganesan S (2016) Nuclear data development related to the Th–U fuel cycle in India. In: Thorium energy for the world. Springer, Cham, pp 199–206
- 2. Sinha RK, Kakodkar A (2006) Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor. Nucl Eng Des 236(7–8):683–700
- 3. DAE website (2018) A brochure ''Advanced heavy water reactor''. http://dae.nic.in/writereaddata/.pdf_37. Accessed Sept 2008
- 4. Ganesan S (2005) New reactor concepts and new nuclear data needed to develop them. In: AIP conference proceedings, vol. 769(1). AIP, pp 1411–1416
- 5. Ganesan S (2007) Nuclear data requirements for accelerator driven sub-critical systems—a roadmap in the Indian context. Pramana 68(2):257–268
- 6. Ganesan S, Sharma AR, Wienke H (2002) New investigations of the criticality property of pure 232 U. Ann Nucl Energy 29(9):1085–1104
- 7. IAEA-EXFOR Database available at [http://www-nds.iaea.org/](http://www-nds.iaea.org/exfor) [exfor](http://www-nds.iaea.org/exfor)
- 8. Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin AI, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, Forrest RA, Fukahori T, Furutachi N, Ganesan S, Ge Z, Gritzay OO, Herman M, Hlavac S, Kato K, Lalremruata B, Lee YO, Makinaga A, Matsumoto K, Mikhaylyukova M, Pikulina G, Pronyaev VG, Saxena A, Schwerer O, Simakov SP, Soppera N, Suzuki R, Takacs S, Tao X, Taova S, Raykanyi F, Varlamov VV, Wang J, Yang SC, Zerkin V, Zhuang Y (2014) Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collboration between Nuclear Reaction Data Centres (NRDC). Nucl Data Sheets 120:272–276
- 9. Naik H, Prajapati PM, Surayanarayana SV, Jagadeesan KC, Thakare SV, Raj D, Mulik VK, Sivashankar BS, Nayak BK, Sharma SC, Mukherjee S, Singh S, Goswami A, Ganesan S, Manchanda VK (2011) Measurement of the neutron reaction cross-section of 232Th using the neutron activation technique. Eur Phys J A 47:51
- 10. Prajapati PM, Naik H, Suryanarayana SV, Mukherjee S, Jagadeesan KC, Sharma SC, Goswami A (2012) Measurement of the neutron capture cross-sections of 232Th at 5.9 MeV and 15.5 MeV. Eur Phys J A 48(3):35
- 11. Crasta R, Naik H, Suryanarayana SV, Shivashankar BS, Mulik VK, Prajapati PM, Ganesh Sanjeev, Sharma SC, Bhagwat PV, Mohanty AK, Ganesan S, Goswami A (2012) Measurement of the ²³²Th(n, γ)²³³Th and ²³²Th(n, 2n)²³¹Th reaction cross- sections at neutron energies of 8.04 ± 0.30 and 11.90 ± 0.35 MeV. Ann Nucl Energy 47:160
- 12. Mukerji S, Naik H, Suryanarayana SV, Chachara S, Shivashankar BS, Mulik V, Sharma SC (2012) Measurement of 232 Th(n, γ) and 232 Th(n, 2n) cross-sections at neutron energies of 13.5, 15.5 and 17.28 MeV using neutron activation techniques. Pramana 79(2):249–262
- 13. Naik H, Surayanarayana SV, Bishnoi S, Patel T, Sinha A, Goswami A (2015) Neutron induced reaction cross-section of 232 Th and 238U at the neutron energies of 2.45 and 14.8 MeV. J Radioanal Nucl Chem 303(3):2497–2504
- 14. Zysin YA, Kovrizhnykh AA, Lbov AA, Selchenkov LI (1961) Cross section for the reaction 232 Th(n, 2n)²³¹Th at 14.7 Mev neutron energy. At Energ 8(4):310
- 15. Reyhancan IA (2011) Measurements and model calculations of activation cross sections for 232 Th (n, 2n)²³¹Th reaction between 13.57 and 14.83 MeV neutrons. Ann Nucl Energy 38(11):2359–2362
- 16. Raics P, Nagy S, Daroczy S, Komilov NV (1990) Indo International Nuclear Data Committee
- 17. Phillips JA (1958) The $(n, 2n)$ cross-section of 232 Th for fission neutrons. J Nucl Eng 7(3–4):215–219
- 18. Perkin JL, Coleman RF (1961) Cross-sections for the (n, 2n) reactions of 232 Th, 238 U and 237 Np with 14 MeV neutrons. J Nucl Energy Parts A/B React Sci Technol 14(1–4):69–75
- 19. Ikeda Y, Konno C, Oishi K, Nakamura T, Miyade H, Kawade K, Katoh T (1988) Activation cross section measurements for fusion reactor structural materials at neutron energy from 13.3 to 15.0 MeV using FNS facility (No. JAERI–1312). Japan Atomic Energy Research Institute
- 20. Kobayashi K, Hashimoto T, Kimura I (1971) Measurements of Average Cross Section for 232 Th(n, 2n)²³¹Th Reaction to Neutrons with Fission-Type Reactor Spectrum and of Gamma-Ray Intensities of ²³¹Th. J Nucl Sci Technol 8(9):492–497
- 21. Karius H, Ackermann A, Scobel W (1979) The pre-equilibrium contribution to the $(n, 2n)$ reactions of ²³²Th and ²³⁸U. J Phys G Nucl Phys 5(5):715
- 22. Karamanis D, Andriamonje S, Assimakopoulos PA, Doukellis G, Karademos DA, Karydas A, Papadopoulos CT (2003) Neutron cross-section measurements in the Th–U cycle by the activation method. Nucl Instrum Methods Phys Res Sect A 505(1–2):381–384
- 23. Filatenkov AA (2016) Neutron activation cross sections measured at KRI in neutron energy region 13.4–14.9 MeV. Report, USSR report to the INDC (0460)
- 24. Chatani H, Kimura I (1992) Measurement of the 232 Th(n, $(2n)^{231}$ Th reaction cross section with 14.5 MeV neutrons. Ann Nucl Energy 19(8):425–429
- 25. Konno C (1993) Activation cross section measurements at neutron energy from 13.3 to 15.0 MeV using the FNS facility. JAERI1329
- 26. Chatani H (1983) A Measurement of the Averaged cross Section for the 232 Th(n, 2n)²³¹Th Reaction with a Fission Plate. Nucl Instrum Methods Phys Res 205(3):501–504
- 27. Butler JP, Santry DC (1961) ²³²Th(n, 2n)²³¹Th cross section from threshold to 20.4 MeV. Can J Chem 39(3):689–696
- 28. Shivashankar BS, Ganesan S, Naik H, Suryanarayana SV, Nair NS, Prasad KM (2015) Measurement and covariance analysis of reaction cross sections for 58 Ni(n, p)⁵⁸Co relative to cross section
for formation of ^{97}Zr fission product in neutron-induced fission of ²³²Th and ²³⁸U at effective neutron-energies E_n = 5.89, 10.11, and 15.87 MeV. Nucl Sci Eng 179(4):423–433
- 29. Yerraguntla SS, Naik H, Karantha MP, Ganesan S, Suryanarayana SV, Badwar S (2017) Measurement of ${}^{59}Co(n, \gamma) {}^{60}Co$ reaction cross sections at the effective neutron energies of 11.98 and 15.75 MeV. J Radioanal Nucl Chem 314(1):457–465
- 30. Ganesan S (2015) Nuclear data covariances in the indian contextprogress, challenges, excitement and perspectives. Nucl Data Sheets 123:21–26
- 31. Meghna RK, Naik H, Sripathi PK, Manjunatha PK, Yerraguntla SS, Ganesan S, Suryanarayana SV (2018) Detailed data sets related to measurement and covariance analysis of $^{232}Th(n,$ $(2n)^{231}$ Th reaction cross section. [https://doi.org/10.13140/RG.2.2.](https://doi.org/10.13140/RG.2.2.18415.69282) [18415.69282](https://doi.org/10.13140/RG.2.2.18415.69282)
- 32. Ziegler JF (2016) SRIM-2013. The stopping and Range of Ions in Solids. Pergamon, New York, p 2013
- 33. Makwana R, Mukherjee S, Mishra P, Naik H, Singh NL, Mehta M, Yerraguntla Santhi Sheela, Karkera M (2017) Measurements of the cross sections of the $^{189}W(n, \gamma)^{187}W$, $^{182}W(n, p)^{182}Ta$,

 $154Gd(n, 2 n)^{153}Gd$, and $160Gd(n, 2 n)^{159}Gd$ reactions at neutron energies of 5 to 17 MeV. Phys Rev C 96(2):024608

- 34. Poppe CH, Anderson JD, Davis JC, Grimes SM, Wong C (1976) Cross sections for the $\binom{7}{1}$ Li(p, n)⁷Be reaction between 4.2 and 26 MeV. Phys Rev C 14(2):438
- 35. Smith DL, Plompen AJM, Semkova V (2005) Correction for low energy neutrons by spectral indexing. Neutron Activation Cross-Section Measurements from Threshold to 20 MeV
- 36. Millsap DW, Landsberger S (2015) Self-attenuation as a function of gamma ray energy in naturally occurring radioactive material in the oil and gas industry. Appl Radiat Isot 97:21–23
- 37. Nowotny R (1998) XMuDat: photon attenuation data on PC. IAEA Report IAEA-NDS 195. [https://www-nds.iaea.org/publica](https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm) [tions/iaea-nds/iaea-nds-0195.htm](https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm)
- 38. Vidmar T (2005) EFFTRAN—a Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Methods Phys Res Sect A 550(3):603–608
- 39. Sonzogni A (2017) NuDat 2.6 (as of April 17, 2017), National Nuclear Data Center, Brookhaven National Laboratory. [https://](https://www.nndc.bnl.gov/) www.nndc.bnl.gov/
- 40. Blons J, Mazur C, Paya D (1975) Evidence for rotational bands near the ²³²Th(n, f) fission threshold. Phys Rev Lett 35(26):1749
- 41. Glendenin LE, Gindler JE, Ahmad I, Henderson DJ, Meadows JW (1980) Mass distributions in monoenergetic-neutron-induced fission of 232 Th. Phys Rev C 22(1):152
- 42. Borchers RR, Poppe CH (1963) Neutrons from proton bombardment of lithium. Phys Rev 129(6):2679
- 43. Santhi Sheela, Naik H, Prasad KM, Ganesan S, Nair NS, Suryanarayana SV (2017) Covariance analysis of efficiency calibration of HPGe detector. Internal Report, No. MU/

STATISTICS/DAE-BRNS/2017/1, 19-February-2017, [https://](https://doi.org/10.13140/rg.2.2.32025.21605) doi.org/10.13140/rg.2.2.32025.21605

- 44. Chadwick M, Herman M, Oblozinsky P, Dunn ME, Danon Y, Kahler A, Smith DL, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown DA, Capote R, Carlson AD, Cho YS, Derrien H, Guber K, Hale GM, Hoblit S, Holloway S, Johnson TD, Kawano T, Kiedrowski BC, Kim H, Kunieda S, Larson NM, Leal L, Lestone JP, Little RC, McCutchan EA, MacFarlane RE, MacInnes M, Mattoon CM, McKnight RD, Mughabghab SF, Nobre GPA, Palmiotti G, Palumbo A, Pigni MT, Pronyaev VG, Sayer RO, Sonzogni AA, Summers NC, Talou P, Thompson IJ, Trkov A, Vogt RL, van der Marck SC, Wallner A, White MC, Wiarda D, Young PG (2011) ENDF/B-VII.1 nuclear data for science and technology: cross sections. Covariances, fission prod yields decay data. Nucl Data Sheets 112:2887–2996
- 45. Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohasawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol 48:1–30
- 46. Koning AJ, Bauge E, Dean CJ, Dupont E, Fischer U, Forrest RA, Jacqmin R, Leeb H, Kellett MA, Mills RW, Nordborg CM, Pescarini Rugama Y, Rullhusen P (2011) Status of the JEFF nuclear data library. J Korean Phys Soc 59(2):1057–1062
- 47. Zabrodskaya SV, Ignatyuk AV, Koscheev VN (2007) ROS-FOND-Rossiyskaya Natsionalnaya Biblioteka Nejtronnykh Dannykh. In: VANT, nuclear constants, pp 1–2
- 48. Koning AJ, Hilaire S, Goriely S (2015) TALYS User Manual: A Nuclear Reaction Program (Westerduinweg 3, P.O. Box 25, NL-1755 ZG Prtten, The Netherlands, 2015). [http://www.talys.eu/](http://www.talys.eu/download-talys/) [download-talys/](http://www.talys.eu/download-talys/)