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Background: A transparent approach for the study of nuclear shapes and sizes in excited states requires
knowledge about dynamic deformations of both neutron and proton distributions, by means of their independent
excitations at the same energy. Heavy-ion scattering could be a reliable approach, facilitating a simultaneous
study of deformations of charge and matter densities in nuclei.
Purpose: Measurement of angular distributions of the inelastic scattering cross sections for excitations to
low-lying 2+

1 and 3−
1 states in 112,116,118,120,122,124Sn nuclei using 12C beam as a probe at Elab = 60 MeV, and

determination of neutron and proton transition matrix elements involved in each excitation.
Methods: Projectilelike fragments have been detected using ten sets of Si-surface barrier detector telescopes to
measure the cross sections for elastic and inelastic scattering channels. Coupled reaction channels calculations
are performed to understand the measured differential cross sections.
Results: Homogeneous nature of surface vibrations (similar deformation for proton and neutron distributions)
for the 2+

1 and 3−
1 states in Sn isotopes is observed.

Conclusions: A comparison with recent results using 7Li projectile at similar Ec.m./VB, which showed damped
neutron vibrations particularly for the 3−

1 state, confirms that such measurements are probe dependent. Intrinsic
transition matrix elements of nuclei can be deduced by removing the effects of finite projectile size in the
extraction of nuclear shapes.

DOI: 10.1103/PhysRevC.100.024614

I. INTRODUCTION

The determination of nuclear shapes in their excited states
is one of the traditional problems of nuclear physics. From
electromagnetic measurements, a large volume of information
is present about the distribution of charge (primarily, protons)
in nuclei. Estimates of the neutron distribution are largely
dependent on the choice of nuclear interactions. In some
systems, the excitation spectrum is better described within
a collective model: a homogeneous neutron-proton fluid un-
dergoing shape oscillations about the equilibrium, with their
respective transition densities in the ratio of N/Z . The ratio of
the neutron and proton transition matrix elements, Mn/Mp, has
commonly been used to identify any inhomogeneity between
their transition strengths, in comparison with the collective
model value of Mn/Mp ∼ N/Z . Since Mp can be accessed
through electromagnetic measurements, isospin conservation
is a convenient approach to deduce Mn, with Mn(N, Z ) =
Mp(Z, N ) [1]. However, this is predominantly applicable for
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light nuclei and their mirrors. For neutron-excess heavier
nuclei, the question of the relative participation of neutron and
proton densities in low-lying collective modes is of consider-
able interest, and heavy-ion collisions offer a reliable substi-
tute for such investigations. Inelastic excitations triggered by
heavy-ion collisions occur under the combined influence of
electromagnetic and nuclear potentials, and allow a simulta-
neous investigation of dynamic deformations of both neutron
and proton distributions that is not affected by normalization
uncertainties. The present work focuses on the extraction and
interpretation of nuclear size and shape information from
the study of heavy-ion inelastic scattering. The dominant
feature, which provides the key to understand such scattering
phenomena, is the strong surface absorption of heavy ions;
most of the elastically or inelastically scattered projectiles are
predominantly involved in a peripheral interaction. The differ-
ential inelastic scattering cross sections observed at energies
above the Coulomb barrier are commonly found to exhibit
distinct patterns, on account of Coulomb-nuclear interference
(CNI), which are qualitatively well represented in terms of
theoretical models corresponding to strongly absorbed probes.

In addition to the Coulomb potential between nuclei, it has
been customary to describe scattering phenomena in terms of
an optical potential VN (r) whose shape is of the same general
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form as that of the nuclear density distribution. For nuclei
with spherical ground state, the low-lying excited states are
pictured as surface vibrations about the mean spherical shape.
It is natural to assume that the corresponding potential would
follow the deformed shape of the density distribution. This can
be expressed as a change in the radius at which the potential is
evaluated, the change depending on the relative orientations of
the radius vector to the intrinsic orientation of the nucleus. For
an axially symmetric deformation in a nucleus, an adequate
parametrization of the radius, R(θ ) = R0[1 + ∑

λ βλ0Y ∗
λ0(θ )],

where λ is the multipolarity of the transition, defines δλ =
βλ0R0 as the intrinsic deformation length. In an inelastic scat-
tering event, the deformed charge (proton) and mass (neutron
+ proton) densities can be approximated by this expansion,
with respective radii Rch and Rm. Such a shape parametrization
is often a starting point for theoretical calculations, where,
the deformed potential can be expressed in terms of both
Coulomb and nuclear form factors [2] as,

Vλ(r) =
∑

λ

[
f C
λ (r) + f N

λ (r)
]
Y ∗

λ0(r̂) (1)

with f C
λ (r) = δch

λ [ 3ZPZT e2Rλ−1
ch

(2λ+1) rλ+1 ], and f N
λ (r) = −δm

λ
dVN (r)

dr . The

transition parameters, δch
λ and δm

λ , are referred to as the charge
and mass (or, potential) deformation lengths, respectively.
These quantities are sensitive to deviations in charge and
mass distributions from equilibrium shapes. The shape of the
differential cross section across a wide angular range allows
a simultaneous determination of δch

λ and δm
λ , from which one

extracts a ratio of Mn/Mp uniquely. A discrepancy often exists
between the nuclear and Coulomb experimental results. A
longstanding difficulty in the comparison has been due to
the different radii that characterize the two types of interac-
tions. The mechanism of Coulomb excitation is well under-
stood and the charge radius has been accurately measured
by electron scattering to be about 1.2A1/3fm for a suitably
diffuse radial charge distribution. On the contrary, the optical
potential radius characterizing the matter distribution may
vary from 1.25A1/3 for collisions with tightly bound probes,
to 1.55A1/3 fm with weakly bound probes, where A is the
atomic mass of the target nucleus. Since the extracted nuclear
shapes rely on the interaction potential VN (r) between the
nucleus and the probe, it is not surprising that these quantities
extracted from scattering of different projectiles are system-
atically different and indicate discrepant transition rates. A
scaling relation proposed by Blair [3], δm

λ ≡ δ
pot
λ = βλ0R0, is

widely used to relate the probe-dependent deformation to the
true deformation of the nucleus. However, this prescription
does not remove all discrepancies that arise due to the nature
of the nucleus-nucleus interaction as well as the finite probe
size.

The characteristics of the dominant low-lying quadrupole
(0+

g.s → 2+
1 ; λ = 2) and octupole (0+

g.s → 3−
1 ; λ = 3) transi-

tions in Sn isotopes have been extensively studied with a vari-
ety of probes like Coulomb excitation, electron, proton, and α

scattering. The λ = 2 electromagnetic transition probabilities,
B(E2) [4–8], are often measured with smaller uncertainties.
However, the λ = 3 transition probabilities, B(E3), have a
wide range with larger uncertainties [9–15]. In a recent work

[16], significant differences between the λ = 3 charge and
mass deformation lengths were observed in all the Sn isotopes
under study, using 7Li as the projectile at Ec.m./VB ≈ 1.3.
Lower values of Mn/Mp(<N/Z ) were extracted, which led
to the conjecture that the λ = 3 vibration may be inhomoge-
neous, when excited by 7Li. However, the excitation of the
2+

1 state was observed to be homogeneous. The target mass
deformation lengths, δm

2,3, were found to be dependent on the
choice of the projectile. The main objective of this study is
to utilize CNI effects for quantitative assessments of δch

λ and
δm
λ , and deduce the Mn/Mp ratios for the 2+

1 and 3−
1 levels in

112,116,118,120,122,124Sn nuclei using the 12C nucleus as probe
at similar Ec.m./VB ≈ 1.3 (Elab = 60 MeV; VB ≈ 42 MeV).
Intermediate energy scattering using an isoscalar probe such
as 12C can be a useful spectroscopic tool for exciting discrete
collective states as such nuclei are sensitive to nuclear matter
distributions and the projectile-target interaction is devoid
of any spin and isospin dependence. Such probes are com-
plementary to those with unpaired proton(s) or neutron(s).
A simultaneous description of differential cross sections for
elastic and inelastic scattering channels has been attempted
by means of explicit coupled reaction channels (CRC) calcu-
lations. A large set of information on probe dependence of
target deformation lengths can be reliably used to make an
estimate about the intrinsic deformation lengths in nuclei.

The paper is organized as follows. The experimental setup
and the data analysis procedure are described in Sec. II.
The model calculations using FRESCO [2] that explain the
experimental data are described in Sec. III. The method used
to arrive at the neutron and proton transition matrix elements
is highlighted in Sec. IV, with an estimate of the intrinsic de-
formation lengths reported in Sec. V. The results are discussed
and summarized in Sec. VI.

II. MEASUREMENT AND DATA ANALYSIS

The measurements for angular distributions of elastic and
inelastic scattering cross sections have been carried out at
the BARC-TIFR Pelletron accelerator facility, Mumbai. Self-
supporting enriched (>95%) targets of 112,116,118,120,122,124Sn
of thicknesses ≈540 μg/cm2, 1.45 mg/cm2, 320 μg/cm2,
280 μg/cm2, 85 μg/cm2, and 290 μg/cm2, respectively, have
been used. Ten telescopes (�E -E ) of Si surface barrier detec-
tors, evenly distributed on two arms of a scattering chamber,
each placed 10◦ apart from its neighboring telescope at a
distance of ≈21 cm from the target center, are used to detect
projectilelike fragments in the angular range of 20◦−110◦.
Two other Si surface barrier detectors, mounted at ±20◦
with respect to the beam at a distance of ≈72 cm from the
center, are used for beam flux normalization. The detector
thicknesses are ≈15−25 μm for �E and ≈300−1000 μm for
the E detectors. A schematic diagram of the setup is shown in
Fig. 1.

A typical gain-matched spectrum of �E versus
Etotal(=E + �E ) is shown for the 12C + 112Sn system in
Fig. 2(a), where projectilelike fragments with different
Z (=2–7) and A(=4–14) are identified. Typical energy
resolution of a telescope is in the range ≈75–100 keV
(≈170–200 keV for the thicker foil of 116Sn), sufficient to
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FIG. 1. Schematic diagram of the experimental setup.

resolve the different excited states of interest. Along with
the elastic scattered peak, the yields of projectile and target
excited states corresponding to the 2+

1 and 3−
1 vibrational

states of 112,116,118,120,122,124Sn as well as the first excited state
of 12C (4.438 MeV), are found to be dominant [see Fig. 2(b)].
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FIG. 2. (a) Typical two-dimensional (�E versus Etotal) gain-
matched spectrum showing the outgoing projectilelike fragments at
θlab = 70◦ in the 12C + 112Sn reaction. (b) One-dimensional spectrum
showing Q-value distribution of elastic and inelastic scattering.

In addition, few states corresponding to one-neutron pickup
(12C, 13C) as well as one-proton stripping (12C, 11B), with
subsequent excitation of the respective residual nuclei,
could be identified. All these channels are included into
the theoretical modeling of the reaction system to constrain
the calculations and lead to realistic potential and coupling
parameters.

The yields for the elastic scattering and low-lying excited
(2+

1 and 3−
1 ) states of target are extracted for determining

their differential cross sections, which are then translated to
the center-of-mass frame. The angular distributions for the
elastic-to-Rutherford ratio are shown as hollow circles in
Figs. 3(a)–3(f). The average statistical errors on the elastic
scattering cross sections are typically 1−2% over the entire
angular range, except for 4−5% at extreme backward angles.
The experimental cross sections for the λ = 2 transition in
each Sn isotope are shown as squares in Figs. 3(g)–3(l), and as
triangles in Figs. 3(m)–3(r) for the λ = 3 transition. The lines
in all figures represent the results of theoretical calculations
described in Sec. III A and III B.

III. THEORETICAL CALCULATIONS

A. Coupled reaction channels (CRC) framework

CRC model calculations for elastic and inelastic scattering
angular distributions have been performed using FRESCO by
coupling the major direct reaction channels to the entrance
channel, in the coupled channels Born approximation (CCBA)
limit. The strongly coupled elastic and inelastic scattering
channels are solved exactly and blocked together to be treated
as a single unit during successive iterations for numerical
convergence. The weaker transfer couplings are treated as
perturbations. The coupling scheme for one of the systems
is shown in Fig. 4. Since the cumulative coupling effect of
all open reaction channels in a colliding system is essentially
manifested into the elastic scattering cross section, the wave
functions for the different model space channels are gen-
erated from a phenomenological optical potential, with real
and imaginary components of Woods-Saxon (WS) volume
form, whose parameters are determined by reproducing the
measured elastic scattering data for each system. The total
potential can be defined as:

Vtotal(r) = Vc(r, rc) − V0

1 + exp
( r−r0

a0

) − iW0

1 + exp
( r−rw

aw

) .

(2)
Here, Vc(r, rc) is the Coulomb potential due to a uniformly
charged sphere of radius Rc = rc(A1/3

P + A1/3
T ), with rc fixed at

1.20 fm and AP and AT are the mass numbers of projectile and
target, respectively. The potential (mass) radius parameter is
calculated as an average of r0 and rw. The long-range volume
imaginary potential used for the entrance channel accounts
for the flux loss due to (i) compound nuclear reactions and
(ii) direct reaction channels that are not included in the model
space (such as higher excitations in the projectile or target,
multinucleon/cluster transfers). The final potential param-
eters used in the CRC calculations that provide optimum
description of elastic as well as nonelastic channels are listed
in Table I.
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FIG. 3. Experimental angular distributions and results of CRC calculations (solid lines for WS potential, dash-dotted lines for DFM
potential) for (a)–(f) elastic-to-Rutherford cross section ratio, and (g)–(l) target inelastic scattering to 2+

1 (squares) and (m)–(r) 3−
1 (triangles

up) states, in 12C + 112,116,118,120,122,124Sn systems at Elab = 60 MeV.

Among the various nonelastic channels, the coupling of
the first excited 2+ state of 12C is found to have consider-
able influence on the elastic scattering angular distribution.
Several studies in the past report an oblate nature of the

deformation of 12C nucleus in its 2+ state, confirmed by ex-
clusive measurements [17,18] of the spectroscopic quadrupole
moment (reorientation coupling), QS (2+), in the range of
0.06–0.07 eb. This translates to an intrinsic quadrupole
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FIG. 4. Coupling scheme of the 12C + 122Sn system used for the CRC calculations in FRESCO.

moment of −0.21 eb in the body-fixed frame, which supports
a substantial oblate deformation. A compilation [19] of the
deformation length for this excitation in 12C obtained from
several existing measurements with a variety of probes shows
scattered values, ranging from −1.42 fm to −1.76 fm. In the
present work, the deformation lengths are suitably adjusted,
and kept same for the Coulomb potential and the real and
imaginary parts of the nuclear potential. The reorientation
coupling is also defined, which is found to be crucial in
order to reproduce the elastic data at the extreme back-
ward angles. The extracted values, δch = δm = −1.38 fm,
B(E2; 0+ → 2+) = 29.5 e2fm4 and QS (2+) = 0.05 eb, lead

TABLE I. Entrance channel WS potential parameters used in
CRC calculations for systems with different Sn targets. Values of r0

and rw were fixed at 1.175 fm and 1.150 fm, respectively.

Target V0 a0 W0 aw

(MeV) (fm) (MeV) (fm)

112Sn 49.70 0.725 23.13 0.670
116Sn 52.85 0.702 26.50 0.613
118Sn 63.75 0.705 38.32 0.620
120Sn 56.65 0.675 37.81 0.551
122Sn 50.45 0.712 39.60 0.595
124Sn 58.85 0.702 40.44 0.612

to an optimum agreement between the calculated (solid lines)
and measured (symbols) cross sections as shown in Figs. 5(a)
and 5(b) for the 12C

∗
(4.44 MeV) + 118,122Sn systems. The

calculated cross sections are found to be highly sensitive to
the sign of the deformation lengths for the 12C excitation. One
fails to reproduce the angular positions of the maxima by con-
sidering prolate deformations, with δch = δm = 1.38 fm, or
with unequal values, δch = 1.38 fm, δm = 0.90 fm (as shown
with dashed and dash-dotted lines in Fig. 5). The angular
distribution obtained from heavy-ion inelastic scattering is,
therefore, a sensitive tool for identifying prolate or oblate
nature of an excitation.

The target excited states are treated as collective vibrational
states. The calculations require adjustments of δch

λ and δm
λ val-

ues (owing to CNI), to reproduce the inelastic scattering an-
gular distributions in Figs. 3(g)–3(r). For the λ = 2 transition
in each isotope, δch

2 is nearly consistent with existing Coulomb
excitation measurements of B(E2) [4,5,7,8], while δm

2 is larger
than δch

2 by about ≈5–7%. The calculations are shown by solid
lines in Figs. 3(g)–3(l). For the λ = 3 transition, the calcula-
tions are found to be less sensitive to the δch

3 parameter, and the
best fits for 112,118,120,124Sn are obtained by using δch

3 values
from an existing Coulomb excitation measurement [10] that
are fairly closer to the data compared to other B(E3) estimates
[9,11,12,14]. The δch

3 values for 116,122Sn are suitably adjusted
(reduced) for a better reproduction of the experimental data,
as Ref. [10] reports much larger values for these two isotopes
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FIG. 5. Experimental differential cross sections (diamonds) for
inelastic excitation of 12C in (a) 12C + 118Sn and (b) 12C +
122Sn systems. The lines show CRC calculations for: (i) δch =
δm = −1.38 fm; QS = +0.05 eb (solid), (ii) δch = δm = +1.38 fm
(dashed), and (iii) δch = +1.38 fm and δm = +0.90 fm (dash-
dotted). Calculation with parameter set (i) is found to suitably agree
with the data and these parameters are used for complete theoretical
modeling in the present systems.

compared to their neighbors. The δm
3 values are nearly inde-

pendent of fluctuations in δch
3 , and have been determined by

exclusively normalizing to the data beyond the valley region
in Figs. 3(m)–3(r). The corresponding calculations are shown
by solid lines. Interestingly, the δch

2 and δch
3 values of the

deformed Coulomb potential are similar to the values deduced
from 7Li-induced excitations [16]. However, the values of δm

2
and δm

3 had to be varied, which establishes a characteristic
probe dependence. The extracted δch,m

λ values that provide
optimum reproduction of the data are given in Table II.

In addition to the inelastic channels of projectile and target,
few dominant one-neutron pickup and one-proton stripping
channels, corresponding to low-lying states of the respective
residual nuclei, are also included with available spectroscopic
factors. The exit channel real potential is kept to be same as
that of the entrance channel, with a short-ranged imaginary
potential of WS square form, given by W0 = 10.00 MeV,
rw = 1.00 fm and aw = 0.40 fm. Integrating the radial wave
functions up to 20 fm in steps of 0.10 fm and summing over

TABLE II. Experimental deformation lengths for the low-lying
λ = 2, 3 excitations in Sn isotopes.

Nucleus λ = 2 λ = 3

cδch
2 (fm) cδm

2 (fm) aδch
3 (fm) cδm

3 (fm)

112Sn 0.709(39) 0.760(45) 0.742(109) 0.707(46)
116Sn 0.651(33) 0.687(42) b 0.763(083) 0.720(62)
118Sn 0.649(25) 0.715(37) 0.757(092) 0.692(51)
120Sn 0.665(39) 0.697(47) 0.720(115) 0.665(41)
122Sn 0.615(28) 0.655(36) b 0.677(076) 0.621(49)
124Sn 0.572(36) 0.614(41) 0.655(107) 0.610(43)

aCoulomb excitation measurement [10].
bModified.
cPresent measurement.

100 partial waves is found to be adequate to attain numerical
convergence.

The chosen parameter set for the optical potential gov-
erning these interactions, given in Table I, is not unique.
There are various such sets which reproduce the data equally
well. However, once a consistent description of elastic and
inelastic scattering channels is attained, it is observed that the
combination of real and imaginary radii required to explain
the data always led to δm

λ similar to those reported in Table II.

B. Sensitivity of interaction potential

The optical model potential used above for interpretation of
elastic and inelastic scattering is largely phenomenological. It
does not incorporate the microscopic aspects of the reaction
and excitation mechanism, where one seeks to describe the
scattering of the projectile from a nucleus in terms of funda-
mental interactions between the nucleons. In order to compare
the results with those using a microscopic potential, the CRC
calculations are repeated with a density-dependent double
folding model (DFM) nucleus-nucleus potential calculated as
a function of center to center separation, r, as

VDFM(r) =
∫

dr1

∫
dr2

[
v00(r + r2 − r1).

(
ρ1n

g.s. + ρ1p
g.s.

)

× (
ρ2n

g.s. + ρ2p
g.s.

)]
. (3)

Here, v00 is the fundamental nucleon-nucleon interaction
parametrized in the M3Y Paris form [20], and folded over the
particle densities. Since 12C is an isoscalar probe (N = Z =
6), the interaction has no isospin-dependent component. The
shapes of the proton and neutron ground-state densities ρ

(p,n)
g.s.

of the projectile (1) and target (2) are taken to be analogous to
their ground-state charge density distributions obtained from
existing electron scattering measurements [21,22]. The r.m.s.
radii for the point-proton distributions in projectile and target
are deduced from the radii of their measured charge distri-
butions, by unfolding the charge distribution of the proton as
well as a minor, but important, contribution from the charge
distribution of neutron (with a nonvanishing mean square
charge radius) [23]. For the 12C nucleus, the neutron and
proton distributions are considered to be equal [24]. For the
Sn nuclei, the radii for the neutron density distributions are
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TABLE III. Normalization coefficients, Nr and Ni, for the real
and imaginary parts of the DFM potential for the interaction between
12C and different Sn isotopes.

Target Nr Ni

112Sn 1.00 0.33
116Sn 1.00 0.28
118Sn 1.00 0.35
120Sn 1.00 0.28
122Sn 1.00 0.40
124Sn 1.00 0.35

kept consistent with their measured skin thicknesses [25,26].
A complex form of the bare DFM potential is used in the full
CRC calculations to generate optimum description of elastic
scattering, with adjustable normalization coefficient for the
imaginary part, Ni, as given in Table III.

For the inelastic excitations of the Sn isotopes, the DFM
calculations have been carried out with the same δch,m

λ values
as reported in Table II. Interestingly, the calculations for
elastic scattering and target excitations are found to give
adequate representation of the data and are in good agreement
with the results of the WS potential. The results are shown
by dash-dotted lines for the 2+

1 state in Figs. 3(g)–3(l) as well
as for the 3−

1 state in Figs. 3(m)–3(r). This implies that the
extracted deformation lengths are independent of the choice
of interaction potential and method of scattering analysis,
provided that a consistent description of both elastic and
inelastic scattering is obtained.

IV. TRANSITION MATRIX ELEMENTS

Additional information about the structure of the 2+
1 and 3−

1
states can be extracted by studying the ratio of the multipole
neutron and proton transition matrix elements, Mn/Mp. This
ratio depends on the relative contribution of the neutron and
proton configurations. From the experimental information of
δm
λ and δch

λ , as reported in Table II, the microscopic neutron
and proton deformation lengths, δ

(n,p)
λ , can be disentangled

as described in Refs. [1,27]. Empirically, it is assumed that

δ
p
λ ≈ δch

λ and δm
λ ≈ Zbpδ

p
λ+Nbnδ

n
λ

Zbp+Nbn
, where bn(p) are microscopic

bare interactions of the external field/probe with the neu-
trons (protons) of the target. For the 12C probe, the ratio of
the neutron and proton field strengths is taken to be unity.
The deduced δ

(n,p)
λ values are summarized in Table IV. The

corresponding neutron and proton multipole transition matrix
elements are commonly written as [28],

M(n,p) =
∫ ∞

0
rλ+2ρ

(n,p)
tr,λ dr, (4)

where the phenomenological transition densities are de-
rived using Bohr-Mottelson prescription [29], given by

ρ
(n,p)
tr,λ = −δ

(n,p)
λ

dρ
(n,p)
g.s.

dr . This leads to the collective model ratio,

Mn/Mp = N〈rλ−1〉nδ
n
λ

Z〈rλ−1〉pδ
p
λ

, which acts as a tool for identifying the
relative participation of neutrons and protons in a transition.
Here, the underlying assumption is that proton and neutron
densities are proportional to each other with Z and N factors,
and the radial moments 〈rλ−1〉n,p are taken over the g.s.
densities. For homogeneous vibrations, neutron and proton
densities are expected to have the same radial shape and one
would obtain δn

λ = δ
p
λ . Any deviation may imply inhomogene-

ity in a transition.
Using the results of δ

(n,p)
λ in the equations given above, the

values of Mn/Mp ratios corresponding to λ = 2 and 3 have
been determined for the different Sn isotopes. The results
are summarized in Table IV as well as in Fig. 6. Both the
λ = 2 (triangles up) and λ = 3 (triangles down) transitions
closely follow the N/Z trend represented by the solid line.
Within errors, both transitions can be considered to be in good
agreement with collective model prescription when probed
using the isoscalar 12C nucleus. Recent results obtained using
a complementary probe,7Li [16], show a significant devia-
tion from N/Z for λ = 3 transition (hollow circles) in all
Sn isotopes. This hints at a possible inhomogeneity for the
octupole excitation in Sn when probed using 7Li, which is
not seen with the 12C probe. For the λ = 2 transition, the
neutron collectivity observed in the present study with the
12C projectile is nearly similar to that observed earlier with
the 7Li projectile [16]. The two sets of measurements predict
different Mn/Mp ratios. As the electromagnetic interaction is
model independent, it can be concluded that measurements
of mass deformation lengths are largely probe dependent,

TABLE IV. Experimental values of microscopic proton and neutron transition parameters corresponding to λ = 2, 3 excitations in Sn
isotopes obtained from present measurements.

Nucleus N/Z λ = 2 λ = 3

δch
2 = δ

p
2 δn

2 Mn/Mp B(E2) B(IS2) aδch
3 = δ

p
3 δn

3 Mn/Mp
aB(E3) B(IS3)

(fm) (fm) (e2b2) (e2b2) (fm) (fm) (e2b3) (e2b3)

112Sn 1.24 0.709(39) 0.804(69) 1.41(18) 0.242(23) 0.251(25) 0.742(109) 0.684(093) 1.19(17) 0.087(12) 0.081(17)
116Sn 1.32 0.651(33) 0.693(72) 1.45(19) 0.207(20) 0.211(28) b 0.763(083) 0.662(101) 1.21(21) b0.098(13) 0.090(19)
118Sn 1.36 0.649(25) 0.744(65) 1.58(16) 0.208(16) 0.246(31) 0.757(092) 0.617(095) 1.16(24) 0.097(17) 0.087(19)
120Sn 1.40 0.665(39) 0.718(63) 1.56(22) 0.217(21) 0.242(38) 0.720(115) 0.625(094) 1.29(28) 0.090(14) 0.082(16)
122Sn 1.44 0.615(28) 0.682(67) 1.63(18) 0.191(17) 0.216(30) b 0.677(076) 0.584(085) 1.33(23) b0.082(14) 0.074(18)
124Sn 1.48 0.572(36) 0.621(71) 1.67(22) 0.167(21) 0.185(29) 0.655(107) 0.541(102) 1.31(32) 0.073(11) 0.067(14)

aCoulomb excitation measurement [10].
bModified.
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FIG. 6. The Mn/Mp ratios for low-lying λ = 2 (triangles up) and
λ = 3 (triangles down) excitations in Sn isotopes probed by 12C
nucleus. The hollow squares and circles represent the corresponding
results with the 7Li projectile [16]. The solid line shows the homoge-
neous value of N/Z .

relying heavily on the interaction potential with the incoming
projectile, convoluted over its finite size.

For strongly absorbed heavy-ion probes, the scattering
cross section in the regions of the Coulomb and nuclear
fields is proportional to the respective matrix elements. The
electromagnetic transition probability is directly related to the
charge deformation, and in turn, the proton transition matrix
element as B(Eλ) = |Mp|2. An analogous quantity related to
the mass deformation of the nucleus is often defined, in which
neutrons and protons maintain their equilibrium density ratios,
known as the isoscalar transition probability [30]

B(ISλ) =
(

Z

A

)2

|Mn + Mp|2. (5)

With the present results of Mn/Mp, the B(Eλ) and B(ISλ)
values have been determined and are reported in Table IV. The
errors on all the above quantities are assigned by propagating
the errors on the corresponding δch

λ and δm
λ values extracted

from the model calculations. One observes (see Table IV) that
the isoscalar 12C probe excites predominantly homogeneous
mass vibrations for the λ = 2, 3 transitions, with nearly simi-
lar B(Eλ) and B(ISλ) values.

V. INTRINSIC DEFORMATION LENGTHS

For nuclear inelastic scattering from statically deformed
nuclei, Hendrie [31] suggested a simple procedure for re-
moving the effects of finite projectile radius in the extraction
of nuclear potential shapes. The prescription can also be ex-
tended to nuclei with vibrational modes of excitations. Here,
the underlying assumption is that the probes and the targets
interact only at their mutual sharply defined surfaces. With
the center of mass at the origin of the body-fixed frame and
an axially symmetric shape, the edge of a spherical nucleus

of radius R0 deformed by quadrupole and octupole vibrations
can be written as:

R(θ ) = R0[1 + β20Y
∗

20(θ ) + β30Y
∗

30(θ )]

= R0[1 + ε(θ )] (6)

with β20, β30 being the intrinsic deformation parameters,
and Y20,Y30 being the spherical harmonics characterizing the
shape of the nucleus. The transition amplitudes of a nucleus
are found to depend sensitively on the chosen radius, which
is largely probe dependent. When a projectile of size (radius)
� probes the dynamically deformed target surface, the locus
of the center of the projectile describes a surface with radius
[19,31],

r(θ ) = r0 + δ2(�)Y ∗
20(θ ) + δ3(�)Y ∗

30(θ ). (7)

Here, r0 characterizes the spatial extension of the optical po-
tential, and defines the potential radius for the target nucleus
in its ground state. The quantities δλ(�) are the experimen-
tally determined deformation lengths for target excitation of
multipolarity λ. These are constrained by the choice of the
probe and the corresponding interaction radius parameter, and
can be written as [31]:

δλ(�) = δλ(0) + 1

2

R0�

R0 + �

∫
Yλ0ε

′(θ )2d
, (8)

where δλ(0) ≡ βλ0R0 defines the intrinsic nuclear deformation
length. The quantities � and R0 are considered to be mea-
sures of the point-matter radii for the probes and the targets,
respectively. The r.m.s. radii for the point-matter distributions
for all nuclei are deduced from their measured charge r.m.s.
radii, by unfolding the charge distributions of the proton
and the neutron, with 〈r2

m〉 = 〈r2
ch〉 − 0.722 + ( N

Z )0.115 fm2.
Here, the mean square charge radius of the proton is 0.722 fm2

(consistent with electron scattering [21] and muonic hydro-
gen Lamb-shift measurements [32]) and mean square charge
radius of the neutron is −0.115 fm2 (from measurements of
neutron-electron scattering length [23]).

For the vibrational Sn nuclei, the 2+
1 and 3−

1 states have
been studied with a variety of projectiles for which the de-
formation lengths can be written as functions of the probe
size �,

δ2(�) = δ2(0) + R0�

R0 + �

(
0.270β2

20 + 0.756β2
30

)
(9)

δ3(�) = δ3(0) + R0�

R0 + �
(0.505β20β30). (10)

Combining the results for δλ(�) of the present work using 12C
probe with the ones from the existing measurements using
other probes such as p [14], d [33], 3He [34], α [9], 6Li
[35], 7Li [16], and 10B [36], a systematic analysis has been
made over a range of � values. Using Eqs. (9) and (10),
the parameters δ2(0) and δ3(0) from the best-fit curves to the
experimental values of δ2(�) and δ3(�), respectively, provide
probe-independent intrinsic λ = 2 and λ = 3 matter deforma-
tion lengths for the Sn isotopes. The results are summarized in
Table V and in Fig. 7. With same radial shape for the intrinsic
neutron and proton density deformations, one can write the
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TABLE V. Intrinsic matter deformation lengths and correspond-
ing Mn/Mp ratios for the Sn isotopes.

Nucleus λ = 2 λ = 3

δ2(0) Mn/Mp δ3(0) Mn/Mp

(fm) (fm)

112Sn 0.840(102) 1.67(24) 0.945(201) 1.84(38)
116Sn 0.743(068) 1.69(17) 0.952(172) 1.88(31)
118Sn 0.731(083) 1.67(20) 0.917(148) 1.85(29)
120Sn 0.718(096) 1.62(22) 0.844(121) 1.82(25)
122Sn 0.677(059) 1.68(14) 0.810(122) 1.91(28)
124Sn 0.644(078) 1.76(18) 0.777(134) 1.92(30)

ratio of their corresponding transition matrix elements as:

Mn

Mp
= δλ(0)

δch
λ

(
1 + N

Z

)
− 1 (11)

with δch
λ taken from Table II. The results are shown in Table V

and also in Fig. 8 as circles and squares for the λ = 2 and
λ = 3 transitions, respectively. It may be interesting to note
that the Mn/Mp ratios obtained here are larger compared
to those in Fig. 6. Particularly for the λ = 3 transition, the
Mn/Mp ratios now lie above the N/Z values, in contrast to the
ones in Fig. 6. This approach shows that neutron collectivity
is the dominant contribution to both the 2+

1 and 3−
1 target

excitations, as may be expected in proton-magic Sn isotopes.
Clearly, the ratio of the neutron and proton transition densities
(Mn/Mp) do not simply scale as N/Z as often assumed in the
collective model. The present results for the λ = 2 transition
are found to be in good agreement with those obtained from
a systematic study of Mn/Mp for single-closed-shell nuclei
reported in Ref. [1]. The uncertainties in the intrinsic de-
formation lengths and Mn/Mp ratios that may arise due to
discrepancies among various measurements of r.m.s. nuclear
charge radii are estimated to be very small.

The results have been compared with microscopic calcu-
lations employing quasiparticle random phase approximation
(QRPA) [38] within the quasiparticle-phonon model [39]
(dashed and dash-dot-dotted lines in Fig. 8) that accounts
for the fact that the proton system in Sn is closed (magic)
and collectivity is largely caused by neutrons. The QRPA ap-
proach leads to larger ratios for the λ = 2 transition as neutron
number increases, while the trend is in decent agreement with
the extracted intrinsic ratio for the λ = 3 transition.

A. Dependence on nature of probe-target interaction

In addition to the probe size, the nature of interaction be-
tween the probe and the target is another factor that is expected
to contribute towards the discrepant transition rates observed
in Sn isotopes across a range of probes. The cumulative effect
is contained in the δm

λ values extracted in each measurement
with a different projectile. Once the effect of the projectile
size is eliminated, and proton and neutron distributions are

considered to have same radial shape, the ratio δm
λ

δch
λ

≈
1+ bn

bp

Mn
Mp

1+ bn
bp

N
Z

is expected to accentuate the effect of solely the nature of

FIG. 7. Nuclear inelastic scattering deformation lengths for the
(a)–(f) λ = 2 and (g)–(l) λ = 3 excitations in Sn isotopes as a
function of probe size �. The measurements are with a variety of
probes such as p (hollow circles) [14,37], d (hexagons) [33], 3He
(filled circles) [34], α (squares) [9], 6Li (filled triangles down) [35],
7Li (diamonds) [16], 10B (filled triangles up) [36], and 12C (stars;
present work). The curves are best fits to Eqs. (9) and (10).
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FIG. 8. Intrinsic Mn/Mp ratios for low-lying excitations in Sn
isotopes corresponding to λ = 2 (circles) and λ = 3 (squares) tran-
sitions. The solid line shows the homogeneous trend of N/Z . The
dashed and dash-dot-dotted lines represent the results of QRPA
calculations for 2+

1 and 3−
1 transitions, respectively [38].

interaction between the probe and the target, surmised by the
corresponding bn/bp ratio, as introduced earlier in Sec. IV.
For the proton-induced reactions, Ref. [1] puts bn/bp = 3,
while for the isoscalar projectiles such as α, 12C, one obtains
bn/bp = 1. Using the veritable Mn/Mp values for the Sn
isotopes as reported in Table V, one obtains a difference of
a mere ≈5% between the δm

2

δch
2

ratios, and a corresponding

difference of ≈10% between the δm
3

δch
3

ratios, from the proton

and heavy-ion induced excitations. Thus, for the projectiles
considered in the present study, the crucial factor for the ex-
traction of intrinsic deformation lengths of the Sn isotopes is
the removal of finite probe size. Thereafter, one observes that
the effect of the nature of probe-target interaction is rendered
insignificant.

VI. SUMMARY

A systematic study of the characteristics of the 2+
1 and

3−
1 excited states in 112,116,118,120,122,124Sn is presented, by

means of heavy-ion inelastic scattering using isoscalar 12C
beam as probe at Elab = 60 MeV. The deformation lengths
and transition probabilities are extracted via extensive CRC
calculations employing the collective model approach. Under
the phenomenological approximation that neutron and proton
transition densities scale as N/Z in collective excitations,
reasonable agreement is seen between their respective de-
formation lengths for all the Sn isotopes, with the ratio of
neutron and proton transition matrix elements Mn/Mp ∼ N/Z
for both the λ = 2 and λ = 3 transitions. The results are
compared with those obtained via scattering of another heavy-
ion projectile, 7Li, at similar Ec.m./VB. It is observed that such
measurements are highly dependent on the choice of probe
as well as the interaction radius parameter. A prescription to
remove the effects of projectile size is used to deduce the
intrinsic mass deformation length for each isotope. The results
indicate that neutron collectivity is the dominant contribution
to the 2+

1 and 3−
1 excited states in the Sn isotopes, as may

be expected in proton-magic nuclei. The effect of size of the
probe is the dominant factor that leads to discrepant transition
rates; the nature of probe-target interaction is secondary.
Extensive measurements using a variety of probes is essential
for understanding the basic collective phenomena in low-lying
transitions along an isotopic chain of stable neutron-excess
nuclei. The present considerations illustrate the path and
problems that would arise when one discusses the deformation
properties of the proton and neutron distributions along a
stable/unstable isotopic chain of similar complexity.
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