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Background: In recent years, considerable interest has been focused on the study of the effect of neutron skin
on the collective properties of vibrational nuclei. This can be best evidenced by exclusively determining neutron
and proton transition matrix elements involved in a particular excitation by investigating the Coulomb-nuclear
interference feature of inelastic scattering.
Purpose: Measurement of angular distributions of the inelastic scattering cross sections for excitations to low-
lying 2+

1 and 3−
1 states in 112,116,118,120,122,124Sn using 7Li beam as probe at Elab = 28 MeV and determination of

neutron and proton transition matrix elements involved in each excitation.
Methods: Projectilelike fragments were detected using six sets of Si-surface barrier detector telescopes to
measure the cross sections for elastic and inelastic scattering channels. Optical model analysis of elastic
scattering data, coupled reaction channels, and continuum discretized coupled channels calculations were
performed to understand the measured differential cross sections. An attempt has been made to extract the
microscopic mass and charge deformation lengths.
Results: For the 2+

1 state, experimental B(E2) values are in good agreement with existing results obtained by
electromagnetic methods. Charge and mass quadrupole vibrations are homogeneous. Significant differences are
observed for excitation to the 3−

1 state across the Sn isotopic chain. Available structural information for collective
octupole vibrations could not reproduce the present data for this excitation. Results show much lower values of
octupole mass deformation parameters.
Conclusions: Isoscalar nature of surface vibrations for the 2+

1 state in Sn isotopes is verified, with Mn/Mp ∼ N/Z .
For the 3−

1 state, damped mass vibration is the primary observation. On comparison with existing estimates, a
significant deviation from isoscalar nature is conjectured for this excitation, when probed with 7Li.

DOI: 10.1103/PhysRevC.99.034609

I. INTRODUCTION

Inelastic transitions in a nucleus are caused by electromag-
netic and/or nuclear interactions with a second nucleus. The
corresponding transition amplitudes reveal dynamic deforma-
tions in the density distribution of the participating nuclei. The
formalism of inelastic scattering is primarily decided by the
number of units of angular momentum transferred in the pro-
cess. This determines the multipolarity, λ, of the reaction and
demarcates three separate regions where (i) the Coulomb field
(long range) dominates, (ii) the Coulomb and nuclear fields
interfere, and (iii) the nuclear field (short range) dominates.
In the collective model of multipole nuclear vibrations, one
thinks of a homogeneous isoscalar neutron-proton fluid un-
dergoing shape oscillations about the equilibrium, with their
respective transition densities in the ratio of N/Z . Neutron-
excess nuclei with high N/Z ratios may exhibit the unusual
feature of decoupled neutron and proton transition densities
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due to the presence of neutron skin. In such scenarios, the
question of the relative participation of neutron and proton
distributions in low-lying collective surface vibrations is of
considerable interest. The nature of the different excited states
are then best evidenced by looking at the transition param-
eters. However, these structural parameters of a nucleus are
often found to be probe dependent [1]. The ratio of the neutron
and proton transition matrix elements, Mn/Mp, has often been
used to identify any inhomogeneity between their respective
transition strengths, in comparison with the isoscalar value
of Mn/Mp ∼ N/Z [2]. While proton (or charge) transition
matrix element, Mp, can be obtained from electron scattering
or Coulomb excitation measurements, the determination of
neutron transition matrix element, Mn, requires scattering
of light-/heavy-ion probes, whose reaction mechanisms are
complex. Excitation in heavy-ion collisions is often induced
by energetic ions not too far above the barrier; contributions
from Coulomb and nuclear processes thus become compara-
ble as impact parameter varies. At large distances between
incoming projectile and target nucleus, Coulomb scattering
to forward angles gives reliable structural information that
connects theory and experiment. As smaller distances are
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approached, the nuclear amplitude changes rapidly causing
scattering to backward angles, making it possible to determine
Coulomb and nuclear deformations separately by measuring
the distribution of scattered particles over a large angular
range. The shape of the differential cross section is character-
ized by a Coulomb-nuclear interference (CNI) pattern, which
allows simultaneous determination of electromagnetic (charge
or Coulomb) and isoscalar (mass or nuclear) transition pa-
rameters, namely deformation lengths, δch

λ and δm
λ . These are

sensitive to deviations in charge (proton) and mass (neutron +
proton) distributions from mean spherical shape, respectively,
when transitions of multipolarity λ take place. Bernstein et al.
[1–4] have reviewed various methods to determine Mn/Mp

ratios. Comparing pure Coulomb scattering with heavy-ion
scattering data is considered as one of the most transparent
approaches. However, to avoid large experimental uncertain-
ties of Mn/Mp due to normalization error of heavy-ion cross
sections, a simultaneous determination of electromagnetic and
isoscalar transition probabilities, for which Mn/Mp is not
affected by normalization uncertainties, may be achieved by
heavy-ion scattering across the CNI region.

The main objective of this study is to utilize such CNI
effects for quantitative assessments of δch

λ and δm
λ , and

deduce the Mn/Mp ratios for the (0+
g.s. → 2+

1 ; λ = 2) and
(0+

g.s. → 3−
1 ; λ = 3) transitions in 112,116,118,120,122,124Sn us-

ing 7Li beam as probe at Elab = 28 MeV (VB ≈ 20 MeV;
Elab/VB ≈ 1.4).

In the present study, differential cross sections for elastic
and inelastic scattering have been measured. A simultaneous
description of these channels has been attempted by means
of explicit coupled reaction channels (CRC) as well as con-
tinuum discretized coupled channels (CDCC) calculations
with a consistent set of structural and potential parameters.
The characteristics of the dominant multipole transitions to
the low-lying first excited states in Sn isotopes have been
frequently studied with a variety of probes such as Coulomb
excitation, electron, proton, and α scattering. The λ = 2 elec-
tromagnetic transition probabilities, B(E2), are found to be
fairly consistent with one another [5–10] with smaller uncer-
tainties. However, the λ = 3 transition probabilities, B(E3),
have a wide range with larger uncertainties [11–18]. The
scattering cross sections for the 7Li + 120Sn system were also
reported earlier in Ref. [19]. Extensive measurements using
heavy-ion probes and understanding of the basic collective
phenomena in low-lying transitions along an isotopic chain
of stable neutron-excess nuclei, with better understood struc-
tures, could act as a reference for studies with unstable nuclei
possessing larger neutron skins, that are expected to be of
similar complexity. A fresh study of Coulomb and nuclear
inelastic excitation of such stable neutron-excess nuclei is
therefore of great interest.

The paper is organized as follows. The experimental setup
and the data analysis procedure used to extract the differential
cross sections are described in Sec. II. The model calcula-
tions using FRESCO [20] that explain the experimental data
are described in Sec. III. The method used to arrive at the
neutron and proton transition matrix elements is highlighted in
Sec. IV, and finally, the results are discussed and summarized
in Sec. V.

II. MEASUREMENT AND DATA ANALYSIS

The angular distributions for elastic and inelastic scat-
tering cross sections were measured at the Pelletron accel-
erator facility, Mumbai. Self-supporting enriched (>95%)
Sn targets were used of thicknesses ≈540 μg/cm2(112Sn),
≈1.45 mg/cm2(116Sn), ≈320 μg/cm2(118Sn), ≈280 μg/cm2

(120Sn), ≈85 μg/cm2(122Sn), and ≈290 μg/cm2(124Sn). Six
telescopes (�E -E ) of Si-surface barrier detectors, placed 10◦
apart on one arm of a scattering chamber at a distance of
≈21 cm each from the target center, were used to detect pro-
jectilelike fragments in the angular range of 25◦–140◦. Two
other Si-surface barrier detectors fixed at 20◦ and 30◦ with
respect to the beam on another arm at a distance of ≈39 cm
from the center, were used for flux normalization. The detec-
tor thicknesses were 25–50 μm for �E and ≈1000 μm for
the E detectors. The schematic experimental arrangement is
same as that shown in Fig. of Ref. [19]. From a typical gain-
matched spectrum of �E versus Etotal(=E + �E ) shown for
the 7Li + 122Sn system in Fig. 1, fragments with different
Z (=1–3) and A(=1–7) are clearly identified. Typical energy
resolution of a telescope was ≈60 keV. Along with the elastic
scattering peak, the yields of projectile and target excited
states corresponding to first quadrupolar rotational state of
7Li (0.478 MeV), and the 2+

1 and 3−
1 vibrational states of

112,116,118,120,122,124Sn were found to be dominant (see inset
of Fig. 1). In addition, several states corresponding to one-
neutron stripping (7Li, 6Li) as well as one-proton stripping
(7Li, 6He), with subsequent excitation of the respective resid-
ual nuclei could be identified.

The background-subtracted yields for the elastic scattering
and excited (2+

1 and 3−
1 ) states of target were extracted sep-

arately for evaluating their differential cross sections, which
were translated to the center-of-mass frame. The experimental
cross sections for scattering to the 2+

1 excited state for each
Sn isotope are shown as open squares in Figs. 2(a)–2(f),
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FIG. 1. Typical two-dimensional (�E versus Etotal) gain-
matched spectrum showing the outgoing projectilelike fragments at
θlab = 60◦ in the 7Li + 122Sn system. Colour gradient scale given on
the right side of the plot represents number of correlated events in
both �E and E detectors. Inset: One-dimensional spectrum show-
ing Q-value distribution of states identified in elastic and inelastic
scattering.
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FIG. 2. Experimental cross sections (open squares) and the re-
sults of the CRC calculations (solid lines for WS potential, dash-dot-
dot lines for DFM potential) for λ = 2 inelastic scattering processes
corresponding to the target excitations in 7Li + 112,116,118,120,122,124Sn
systems. Inset: Experimental elastic scattering angular distributions
(circles) with calculation using WS potential (dashed lines).

with the elastic scattering angular distributions in the inset
(open circles). The average statistical errors on the elastic
scattering cross sections are typically 2–3 % over the entire
angular range. The λ = 2 transition is found to be dominant
in the forward region where Coulomb field is expected to
have greater influence than nuclear field. Figures 3(a)–3(f)
shows the experimental differential cross sections for inelastic
excitation to the 3−

1 state (triangles). The lines in all figures
represent the results of the CRC calculations described in
Sec. III A.

III. THEORETICAL CALCULATIONS

A. CRC calculations

CRC calculations were performed using FRESCO by cou-
pling the major direct reaction channels to the entrance
channel. The target excited states were treated as collective
vibrational states. The distorted waves were generated from
a phenomenological optical potential of Woods-Saxon (WS)
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FIG. 3. Experimental cross sections (filled triangles up) and the
results of the CRC calculations (lines) for λ = 3 inelastic scat-
tering processes corresponding to the target excitations in 7Li +
112,116,118,120,122,124Sn systems. Calculations using WS potential with
δch

3 values from existing Coulomb excitation measurement [11] (solid
lines), electron scattering [13,14] (dashed lines), and proton scat-
tering [15] (dash-dot lines) are shown. Also shown are calculations
using DFM potential with δch

3 from Coulomb excitation (dash-dot-dot
lines).

volume type, whose parameters were determined by repro-
ducing the measured elastic scattering data for each system.
This may be considered as the local equivalent potential (i.e.,
bare + polarization potential) that has taken care of the effect
of couplings of breakup and other excluded reaction channels
on the elastic channel. The total potential is defined as:

Vtotal(r) = Vc(r, rc) − V0

1 + exp
( r−r0

a0

) − iW0

1 + exp
( r−rw

aw

) .

(1)

Here, Vc(r, rc) is the Coulomb potential due to a uniformly
charged sphere of radius Rc = rc(A1/3

P + A1/3
T ), with charge

radius rc fixed at 1.20 fm and AP and AT are the mass
numbers of projectile and target, respectively. The mass radius
is calculated as an average of r0 and rw. The depth of the
real part was adjusted to optimize the simultaneous fit to
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elastic and inelastic scattering cross sections in each system.
The volume absorptive imaginary part accounted for flux lost
into the excluded nonelastic channels, as well as compound
reaction in the entrance channel. To arrive at a consistent set
of nuclear potential parameters across the Sn isotopic chain,
two of the six parameters (r0 and a0) were kept fixed and the
ranges of the others were restricted.

For constraining the set of potential and target structural
parameters, inelastic excitation of 7Li to its only bound
quadrupolar rotational state 1

2
−

at 478 keV was also cou-
pled into the model calculations with δch = 3.944 fm (ob-
tained using ground-state spectroscopic quadrupole moment
−4.06 e fm2 and B(E2; 3/2− → 1/2−) = 8.3 e2 fm4 and
δm = 1.993 fm, as measured earlier in Ref. [19]. This mass
deformation length is consistent with the one obtained from
an earlier measurement on 7Li + 11B, 13C systems [21]. How-
ever, it may be important to note that in the work of Ref. [21]
the relative heights of the maxima observed in the differential
cross section could not be reproduced with the parameters
δm = δch = 2.0 fm. In the present work, the nuclear contri-
bution to the inelastic excitation of this state is found to be
smaller compared to the Coulomb contribution, i.e., δm < δch.
A similar feature of larger Coulomb amplitude is also ob-
served in Ref. [22]. The present set of calculations could also
satisfactorily explain the existing data for 7Li* (0.478 MeV) +
120Sn (g.s.) at a higher bombarding energy [23], as shown
previously in Ref. [19]. To find the suitability of the values
of δch and δm for the bound excited state of 7Li to be used
in CRC and CDCC calculations, different sets of calculations
with unequal as well as similar charge and mass deformation
lengths are compared with experimental data (symbols) in
Fig. 4. The solid line represents the CRC calculation with
unequal deformation lengths for mass and charge densities
(δch = 3.94 fm and δm = 2.0 fm), whereas, the dashed line
corresponds to the CRC calculations using equal deforma-
tion lengths, i.e., δm = δch = 2.0 fm. The dashed-dotted line
corresponds to the result of CDCC calculations described
later in Sec. III B. Since the solid and dashed-dotted lines
reasonably reproduce the experimental data, the respective
parameters for 7Li excitation have been used for CRC and
CDCC calculations.

In addition, some of the dominant states identified ex-
perimentally corresponding to one-nucleon transfer processes
with residual excitation up to ≈2 MeV were included with
available spectroscopic factors [24–26]. The exit channel real
potential was kept to be same as that of the entrance channel,
with a short-range imaginary potential of WS squared form.
The coupling scheme for each system is similar to that de-
scribed in Ref. [19]. The final potential parameters are listed
in Table I. Integrating the radial wave functions up to 50 fm
in steps of 0.25 fm and summing over 100 partial waves were
found to be adequate to attain numerical convergence.

The measured inelastic scattering angular distributions
were reproduced by collective model calculations. In most
macroscopic models such as FRESCO, the collective modes
are considered as vibrations of the nuclear surface and are
associated with the deformation of the charge and/or mass
density, usually described in terms of the derivative of the
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FIG. 4. Experimental cross sections (hollow squares) for inelas-
tic scattering corresponding to bound excited state of 7Li in 7Li +
120Sn system. The lines show CRC calculations for different pairs
of δch and δm values : (i) δch = 3.944 fm, δm = 1.993 fm (solid),
(ii) δch = δm = 2.0 fm (dash-dotted), and (iii) CDCC-CRC calcula-
tions (dashed) with B(E2; 3/2− → 1/2−) = 8.39 e2 fm4 (see text).
Calculations for (i) and (iii) are found to suitably agree with the data
and these parameters are used for complete theoretical modeling in
the CRC and CDCC-CRC frameworks, respectively.

ground-state density of a nucleus. The form factors for inelas-
tic excitations are expressed in terms of the derivative of the
phenomenological potential governing elastic scattering of the
colliding nuclei, with multiplicative free parameters known as
the deformation lengths. The present calculations made use
of independent adjustment of charge and mass deformation
lengths, δch

λ and δm
λ (owing to CNI) to reproduce the first and

second peak respectively, in Figs. 2(a)–2(f) and Figs. 3(a)–
3(f), as well as angular position of the minimum between
them. For the λ = 2 transition in each isotope, δch

2 is consistent
with existing Coulomb excitation measurements of B(E2)
[5–10] while δm

2 differs by only ≈2–3 %. The calculations
are shown by solid lines in Figs. 2(a)–2(f). For the λ = 3
transition, however, existing δch,m

3 values measured with
different probes employing either electromagnetic or nu-
clear fields [11–13,15–17,27], could not reproduce the data

TABLE I. WS potential parameters for entrance channel used
in CRC calculations. Values of r0 and a0 have been kept fixed at
1.243 fm and 0.695 fm, respectively.

Target V0 (MeV) W0 (MeV) rw (fm) aw (fm)

112Sn 26.05 55.30 1.134 0.620
116Sn 29.25 59.50 1.166 0.575
118Sn 33.66 54.20 1.147 0.605
120Sn 35.06 57.71 1.138 0.678
122Sn 32.05 59.20 1.157 0.571
124Sn 31.45 58.70 1.165 0.605
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TABLE II. Experimental deformation lengths for the low lying
λ = 2, 3 excitations in Sn isotopes.

Nucleus λ = 2 λ = 3

δch
2 (fm)a δm

2 (fm)a δch
3 (fm)b δm

3 (fm)a

112Sn 0.702(35) 0.698(35) 0.738(103) 0.581(51)
116Sn 0.651(41) 0.656(38) 0.745c 0.542(52)
118Sn 0.645(33) 0.651(33) 0.753(108) 0.570(48)
120Sn 0.660(29) 0.642(41) 0.717(129) 0.556(30)
122Sn 0.615(31) 0.611(42) 0.655c 0.477(41)
124Sn 0.569(26) 0.563(41) 0.632(087) 0.458(33)

aPresent measurement.
bFrom Coulomb excitation measurement [11].
cModified.

throughout the angular range. Large inconsistency also ex-
ists among measurements with the same probe at different
incident energies [13,14,16,17]. The deformation lengths ex-
tracted from several existing measurements were found to
overestimate the cross section beyond the CNI region. For
obtaining the best fit, this was remedied by keeping δch

3 � δm
3

in the present calculations. The results of the calculations
reflected a strong correlation between δm

2 and δch
2 , whereas δm

3
was found to be nearly independent of δch

3 , and determined
independently and exclusively from the present data. How-
ever, these values are lower than the range of those previously
observed over the years. The first maximum of the differential
cross section could not be well reproduced, and different sets
of calculations are shown in Figs. 3(a)–3(f) keeping δm

3 fixed
and with δch

3 measured via Coulomb excitation (solid lines)
[11], electron scattering (dashed lines) [13,14], and proton
scattering (dash-dotted lines) [15], wherever available. The
extracted δch,m

λ values that provide best reproduction of the
present experimental data are presented in Table II. The results
reported here involve δch

3 values deduced from a systematic
measurement of Coulomb excitation [11], which is fairly
closer to the data compared to other estimates and is extracted
purely under the influence of the electric field. Reference [11],
however, reports much larger values for 116,122Sn compared to
neighboring isotopes. As the calculations were found to be
less sensitive to δch

3 , these values were suitably adjusted for
116,122Sn to obtain a uniform set across the isotopic chain.

1. Sensitivity of optical potential

To test the dependence of the inelastic coupling parameters
on the chosen phenomenological potential, the exercise was
repeated with different sets of optical potential parameters
for each isotope. This was achieved by varying the depth of
the real part between 20.0 MeV and 65.0 MeV, imaginary
depth between 25.0–60.0 MeV, real radius between 1.20–
1.25 fm, imaginary radius between 1.15–1.25 fm, and the
diffuseness parameters were varied between 0.60–0.70 fm
each. The description of the experimental elastic scattering
angular distribution was taken as the reference in each case.
The inelastic scattering distribution, however, could be well
reproduced with the same set of δch,m

λ as indicated in Table II.
In particular, the location of the second maximum as well as

the angular position of the first rapid falloff of the differential
cross section remain unchanged. The combination of real
and imaginary radii required to explain the elastic scattering
data always led to similar δm

λ irrespective of whether r0 < rw

or r0 > rw. In order to compare the calculations using the
phenomenological potential with a universal potential, the
CRC calculations were repeated with density-dependent dou-
ble folding model (DFM) nucleus-nucleus potential calculated
for systems with at least one spinless nucleus, as a function of
center to center separation, r, as

VDFM (r) =
∫

dr1

∫
dr2

[
vIS (r + r2 − r1).

(
ρ1n

g.s. + ρ1p
g.s.

)

.
(
ρ2n

g.s. + ρ2p
g.s.

) + vIV (r + r2 − r1).
(
ρ1n

g.s. − ρ1p
g.s.

)
.
(
ρ2n

g.s. − ρ2p
g.s.

)]
(2)

Here, vIS and vIV are the radial isoscalar (spin and
isospin independent) and isovector (isospin-dependent) parts
of the fundamental microscopic nucleon-nucleon interaction
parametrized in the M3Y Paris form [28,29], and folded
over the particle densities. The shapes of the proton and
neutron ground-state densities ρ

(p,n)
g.s. of the projectile (1) and

target (2) were taken to be analogous to their ground-state
charge density distributions obtained from existing electron
scattering measurements [30], with their r.m.s. radii consistent
with the measured neutron skin thickness of the 7Li [31]
and Sn nuclei [32,33]. A complex form of the bare DFM
potential was used in the full CRC calculations with adjustable
normalization factors for the real and imaginary parts, to
generate optimum description of elastic scattering (not shown
here) and all excited states with the same structural parameters
as used earlier. The calculations with DFM have been shown
by dash-dot-dot lines for the 2+

1 state in Figs. 2(a)–2(f) as well
as for the 3−

1 state in Figs. 3(a)–3(f). The results are in good
agreement with those of the WS potential.

2. Model dependence

To justify the validity of the theoretical calculations in
predicting much lower values of δm

3 compared to various
existing estimates, and rule out any model dependence, a
reanalysis for few sets of existing data on elastic and λ =
3 inelastic scattering cross sections for an Sn isotope with
different probes, namely p [15], 3He [18], α [17], 6Li [27], was
carried out using FRESCO. The potential parameters, number
of channels and coupling parameters such as deformation
lengths are kept same as in the original measurements. The
calculations are done similar to the procedure followed for
the present study. The inelastic scattering data (open triangles)
and resulting calculations (dashed lines) for the 3−

1 excitation
in 116Sn are shown in Figs. 5(a)–5(d) with a good agreement
between them. The fit to elastic scattering data has also been
reproduced for each system (see insets of Fig. 5). Similar
results are observed for existing data on other isotopes of
Sn as well. The data is found to be sensitive to δch

3 mainly
in the forward region, though the sensitivity is low. Beyond
that, sensitivity depends on δm

3 , as also observed in the present
work. The above exercise rules out any dependence on the
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FIG. 5. Experimental cross section (hollow triangles) and calculation (dashed lines) for λ = 3 inelastic scattering process in (a) p+116Sn
[15], (b)3He + 116Sn [18], (c) α + 116Sn [17], and (d)6Li + 116Sn [27] systems. Inset: elastic scattering angular distribution (circles) and
respective calculation (solid lines).

coupled channels model employed in the present calculations
to predict the values of δm

3 independently.

B. CDCC-plus-CRC calculations

To further investigate the role of the weakly bound nature
of the projectile (if any) in obtaining the low values of δm

3
in the Sn targets, another set of calculations, the CDCC
(continuum discretized coupled channels)-plus-CRC that in-
clude a simultaneous analysis of projectile breakup, target
collective excitations, and transfer processes, have also been
carried out. The coupling of direct and resonant breakup
channels of 7Li, which is known to affect the elastic scattering,
may in turn affect the target excitation channels that we are
interested in. In addition, direct coupling of the projectile
breakup channels with the target excitations may also affect
the inelastic scattering cross sections. Simultaneous inclusion
of both projectile breakup and target inelastic channels has
been made by first calculating the cluster-folded (CF) bare
potential [34] from the fragment-target interaction potentials.
Then, this CF potential has been read in to calculate the

additional potentials contributed by the target deformations
corresponding to different excitations.

The projectile excitations corresponding to the bound ex-
cited state (0.478 MeV, 1/2−), unbound resonant states at
4.63 MeV (7/2−), 6.67 MeV (5/2−), and nonresonant con-
tinuum above breakup threshold (Eth = 2.47 MeV) up to an
excitation energy of about 8 MeV of 7Li were included, where
it has been assumed to have a cluster structure of α + t . The
Watanabe-type folding model is assumed for the structure of
7Li as an α + t two-body cluster [35]. This calculates the
electromagnetic (charge) as well as nuclear (mass) transition
strengths among the excited states of 7Li from the resulting
wave functions. The transition potentials are calculated by
folding the α and t optical potentials over the 7Li cluster
wave functions for the initial and final states, in a similar
way to the deformed diagonal potentials as in a conventional
collective model calculation. This narrows down to the target
structural factors as the only adjustable parameters in the
model. The corresponding calculation for excitation to the
0.478 MeV state of 7Li with established B(E2; 3/2− →
1/2−) = 8.3 e2 fm4, is shown as dashed lines in Fig. 4.
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TABLE III. α-t binding potentials of the form V = −V0e−r2/a2
0 +

Vsoe−r2/a2
so for the 7Li projectile used in CDCC+CRC calculations.

State(s) V0 (MeV) a0 (fm) Vso (MeV) aso (fm)

g.s.+nonresonant 83.780 2.590 2.006 2.590
bound inelastic 83.557 2.570 2.006 2.570
7/2− 83.404 2.520 4.012 2.520
5/2− 78.810 2.520 4.012 2.520

A standard entrance channel projectile-target cluster-
folded (CF) interaction was generated, where Sao Paulo po-
tentials [36] were used as the real parts of the fragment-target,
α + Sn and t + Sn potentials, evaluated at Eα = 4

7 Elab and
Et = 3

7 Elab. The imaginary potentials were of Woods-Saxon
form with short ranged volume and surface terms. The contin-
uum of the α-t cluster of 7Li at excitation Ex > Eth has been
discretized with respect to the α-t relative momentum of h̄k
into several momentum bins, in steps of �k = 0.2 fm−1, up
to k = 0.8 fm−1 [37]. Each bin beyond Eth has been treated as
an excited state of the α-t cluster with excitation energy equal
to the mean excitation value for that bin. The spin of each
excited state has been obtained as the vector sum of the α-t
relative angular momentum L and the spin of the triton S. All
possible states with L = 0,1,2,3 have been included. The bin-
ning of the continuum with L = 3 has been suitably modified
to include the resonances 7/2− and 5/2− with average exci-
tation energies (above Eth) of Ex = 2.16 and Ex = 4.21 MeV,
and widths of 0.2 and 3.0 MeV respectively. The α-t binding
potentials are of Gaussian form as given in Ref. [38], but
suitably adjusted to reproduce the ground-state quadrupole
moment and B(E2; (3/2−

g.s. → 1/2−
0.478 MeV)) for 7Li, as well

as generate resonance criteria (phase shift) at correct excita-
tion energies (see Table III). The quadrupole and octupole
target excitations were then coupled to the bound and un-
bound excitations of the projectile by deforming the entrance
channel Coulomb and CF interactions with suitable δch

λ and δm
λ

parameters, respectively. Few dominant one-nucleon transfer
channels have also been coupled. The strongly coupled elastic,
breakup, and inelastic scattering channels were solved exactly
and blocked together to be treated as a single unit during
iterations. The weaker transfer couplings were treated as suc-
cessive perturbations iteratively, with exit channel potentials
and couplings as mentioned in Sec. III A. The fragment-
target São Paulo potentials were normalized suitably to re-
produce the elastic scattering angular distribution for each
system.

The inelastic scattering data and resulting calculations
(solid lines) for the 3−

1 excitation are shown in Fig. 6 with
a good agreement between them in the regions of the valley
and the second maximum. The fit to elastic scattering data
has also been reproduced for each system (insets of Fig. 6).
Interestingly, the data could again be reproduced with the
same set of δch,m

3 as indicated in Table II which were obtained
from CRC analysis described earlier in Sec. III A. In addition,
calculations were also performed with lower values of δch

3 but
equal to the respective values of δm

3 as shown by dashed lines.
However, the latter calculations lead to larger disagreement

FIG. 6. Experimental cross sections (filled triangles up) and the
results of the CDCC-plus-CRC calculations (solid lines) for λ = 3
inelastic scattering processes corresponding to target excitations in
7Li + 112,116,118,120,122,124Sn systems. Inset: Experimental elastic scat-
tering angular distribution (circles) with calculation under CDCC-
CRC formalism (dashed lines). The calculations for inelastic scatter-
ing with reduced values of δch

3 but equal to δm
3 are also shown (dashed

lines).

between experiment and theory in the region of the first
maximum. These tests put emphasis on the validity of the
realistic coupling parameters and structural information, par-
ticularly mass deformation length, extracted using the model
calculations for the present systems. The choice of charge
deformation length, however, remains ambiguous. Hence,
for completeness, the further analysis to probe the interplay
between charge and mass vibrations in Sn is carried out
using δch

3 values deduced from existing Coulomb excitation
measurement [11].

IV. TRANSITION MATRIX ELEMENTS

From the experimental information of δm
λ and δch

λ , the
exclusive contributions of neutrons and protons can be decou-
pled in each transition. This is achieved by extracting the cor-
responding microscopic deformation lengths, δ

(n,p)
λ , involved

in the excitations as described in Refs. [39,40]. A transparent
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TABLE IV. Experimental values of microscopic proton and neutron transition parameters obtained from present measurements correspond-
ing to λ = 2 transition.

Nucleus N/Z δch
2 = δ

p
2 (fm) δn

2 (fm) Mn/Mp B(E2) (e2b2) B(IS2) (e2b2)

112Sn 1.24 0.702(35) 0.694(69) 1.25(12) 0.239(9) 0.241(28)
116Sn 1.32 0.651(41) 0.659(70) 1.36(15) 0.207(6) 0.211(18)
118Sn 1.36 0.645(33) 0.655(65) 1.41(09) 0.205(7) 0.214(18)
120Sn 1.40 0.660(29) 0.629(73) 1.38(10) 0.215(9) 0.209(21)
122Sn 1.44 0.615(31) 0.606(73) 1.46(11) 0.191(4) 0.189(15)
124Sn 1.48 0.569(26) 0.558(68) 1.51(08) 0.165(4) 0.166(14)

approach to deduce isospin dependence requires both (p, p′)
and (n, n′) scattering data available at the same energy. But
heavy-ion scattering is a reliable substitute. Empirically, it

is often assumed [1,2] that δ
p
λ ∼ δch

λ and δm
λ ∼ Zbpδ

p
λ+Nbnδ

n
λ

Zbp+Nbn
,

where bn(p) are microscopic bare interactions of the external
field (7Li) with the neutrons (protons) of the Sn isotopes. The
ratio bn/bp is deduced from the DFM calculations for the
isoscalar and isovector parts of the effective nucleus-nucleus
potential [18,40], and is ≈1 for the present case of heavy-ion
systems having a much smaller isospin-dependent interaction
compared to the isoscalar part, as expected [28].

The deduced δ
(n,p)
λ values are summarized in Tables IV

and V. The neutron and proton multipole transition matrix
elements are commonly written as

M(n,p) =
∫ ∞

0
rλ+2ρ

(n,p)
tr,λ dr ∝ (N, Z )δ(n,p)

λ 〈rλ−1〉n,p, (3)

where the corresponding transition densities of a 2λ-pole
excitation are derived using Bohr-Mottelson prescription [41]

given by ρ
(n,p)
tr,λ = −δ

(n,p)
λ

dρ
(n,p)
g.s.

dr . The radial momenta 〈rλ−1〉n,p

are taken over the g.s. densities. The ratio of the matrix

elements Mn/Mp = N〈rλ−1〉nδ
n
λ

Z〈rλ−1〉pδ
p
λ

acts as a realistic tool for iden-
tifying the relative participation of neutrons and protons in a
collective mass vibration. If the transitions are pure isoscalar
with homogeneous mass vibrations, neutron and proton densi-
ties are expected to have the same radial shape and one would
obtain δn

λ = δ
p
λ . Any deviation may imply inhomogeneity in a

transition. Here, the underlying assumption is that proton and

neutron densities are proportional to each other with Z and N
factors.

The results of the present work are summarized in
Tables IV and V as well as in Fig. 7. For λ = 2 transitions,
it can be observed from Table IV and Fig. 7(a) that the
Mn/Mp ratios (red filled diamonds) agree very well with the
homogeneous collective model predictions (N/Z) represented
by the dotted line. However, for transition to the 3−

1 states
(Table V), with unequal mass and charge deformation lengths
(that provide best reproduction of inelastic scattering cross
sections), the Mn/Mp ratios are found to be much smaller
compared to the collective model predictions (N/Z), as shown
as blue filled stars in Fig. 7(b), with no previous measurement.
From the present experimental data for inelastic scattering,
the values obtained for δm

3 were unambiguous, whereas, the
ones for δch

3 have large tolerances. Hence, the Mn/Mp ratios
become highly sensitive to the choice of δch

3 . To highlight
this, the ratios obtained for δch

3 = δm
3 are also shown as open

circles in Fig. 7(b), which agree with the homogeneous N/Z
line, as expected.

The results have been compared with microscopic calcu-
lations [dashed and dash-dot-dotted lines in Figs. 7(a) and
7(b)] employing quasiparticle random phase approximation
(QRPA) [42] within the quasiparticle-phonon model [43] that
accounts for the fact that the proton system in Sn is closed
(magic) and the neutron one is not (nonmagic) and collectivity
is largely caused by neutrons. The calculations corresponding
to both λ = 2 as well as λ = 3 transitions lead to the Mn/Mp

ratios to be much larger than N/Z . Since the QRPA result is
mainly dependent on the neutron density and it does not in-
corporate the effect of the interplay between electromagnetic

TABLE V. Experimental values of microscopic proton and neutron transition parameters corresponding to λ = 3 transition obtained from
present measurements and Coulomb excitation measurements.

Nucleus N/Z δch
3 = δ

p
3 (fm)a δn

3 (fm)b Mn/Mp
b B(E3) (e2b3)a B(IS3) (e2b3)b

112Sn 1.24 0.738(103) 0.453(93) 0.79(13) 0.087(12) 0.058(11)
116Sn 1.32 0.745c 0.392(71) 0.73(10) 0.095c 0.053(08)
118Sn 1.36 0.753(108) 0.434(95) 0.82(15) 0.097(14) 0.059(10)
120Sn 1.40 0.717(129) 0.439(99) 0.91(15) 0.090(17) 0.057(11)
122Sn 1.44 0.655c 0.353(66) 0.82(11) 0.077c 0.043(08)
124Sn 1.48 0.632(087) 0.338(65) 0.85(13) 0.073(10) 0.040(07)

aFrom Coulomb excitation measurement.
bPresent measurement.
cModified.
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FIG. 7. Mn/Mp ratios for low-lying excitations in Sn isotopes
corresponding to (a) λ = 2 and (b) λ = 3. The dotted line shows
the homogeneous isoscalar value of N/Z . The dashed and dash-dot-
dotted lines represent the results of QRPA calculations for 2+ and 3−

transitions respectively.

and nuclear interactions, the large difference in Mn/Mp ratios
compared to the measured values for both 2+

1 as well as 3−
1

states may be a consequence of them.
For strongly absorbed probes, such as 7Li, only the surface

region of the Sn nuclei contributes to the direct reaction
processes so that the scattering cross section in the regions
of the Coulomb and nuclear fields is proportional to the
respective matrix elements. The electromagnetic transition
probability is directly related to the charge deformation, and
in turn, the proton transition matrix element of a nucleus
as B(Eλ) = |Mp|2. To decouple the presence of in-phase
(homogeneous) and out-of-phase (inhomogeneous) vibrations
of neutrons and protons in a transition, a similar quantity
related to the mass deformation of the nucleus may be defined,
in which neutrons and protons explicitly move in phase and
retain the equilibrium density ratios, known as the isoscalar
transition probability [4]

B(ISλ) =
(

Z

A

)2

|Mn + Mp|2. (4)

For Mn/Mp = N/Z , one obtains B(ISλ) ≡ B(Eλ). Using the
results of Mn/Mp, the present B(Eλ) and B(ISλ) values
are shown in Tables IV and V. The errors on all the above
quantities are assigned by propagating the errors on the
corresponding δch

λ and δm
λ values extracted from the model

calculations. One observes that the λ = 2 vibration is a pre-
dominantly homogeneous mass vibration with similar B(E2)
and B(IS2) values. A significant deviation is observed for

λ = 3 transition in Sn using δch
3 from pure electromagnetic

measurement and δm
3 from present study. This is reflected in

the damped isoscalar transition probability, B (IS3)  B(E3),
owing to much lower collective Mn/Mp ratios. The mass
deformation length across the chain of Sn isotopes is lower
than existing estimates obtained from a variety of methods.
Similar observations were made even for the low-lying ex-
citations in 90Zr [44], 94,98Mo [45], and in neutron-excess
oxygen [40] and sulfur isotopes [46]. The present results hint
at a possible inhomogeneity for the octupole excitation in Sn
when probed using 7Li. The transition densities of neutrons
and protons are not of the same radial shape when excitation
to this state takes place, leading to damped isoscalar vibrations
compared to previously observed parameters characterizing
charge vibration. Considerable uncertainty in the result of
Fig. 7(b) may arise due to lack of consistent electromagnetic
data and ambiguity in the available choices for B(E3) values.
Each set predicts different Mn/Mp ratios. However, the net
conclusion is found to remain unchanged.

V. SUMMARY

Differential cross sections for elastic scattering and first
2+

1 and 3−
1 target excited states have been measured in the

7Li + 112,116,118,120,122,124Sn systems at 28 MeV beam energy
and explained with CRC as well as CDCC-CRC calcula-
tions. The extracted B(E2) values are consistent with existing
measurements, with similar mass and charge deformation
lengths. Reasonable agreement is seen between the proton
and neutron deformation lengths for all isotopes leading to
Mn/Mp ∼ N/Z . As a result, the difference between proton and
neutron transition densities is negligible. The cross section is
entirely determined by the isoscalar form factor, identical to
the Coulomb form factor. A simple collective model is usually
adequate, normalized to give the observed B(E2).

Unlike the 2+
1 state, the mass (isoscalar) deformation

length for the 3−
1 state in each Sn isotope is found to be

much smaller than the values of deformation length obtained
from existing measurements. This is also reflected in the much
lower value of Mn/Mp (N/Z) for this state, obtained by
comparing the extracted mass deformation length with charge
deformation length from pure electromagnetic measurements.
The sensitivity of the differential cross section to δch

3 is found
to be low. However, it greatly influences the ratio Mn/Mp.
Moreover, δm

3 was found to be nearly independent of δch
3 .

The damped mass vibration could be a direct consequence
of inhomogeneous oscillations of proton and neutron densi-
ties owing to the presence of neutron skin, which does not
show up in the integrated B(E3) values commonly obtained
from homogeneous collective model calculations. Since the
understanding of the pure electromagnetic excitation is well
established, fresh measurements for a precise estimate of the
octupole charge deformation lengths are highly crucial, to re-
duce such uncertainties in understanding the effects of nuclear
skin, if any, on the mechanism of CNI in heavy ion scattering.
The present considerations will be important when one dis-
cusses the deformation properties of the proton and neutron
distributions in highly neutron-rich unstable nuclei, where the
effect of the neutron skin is expected to be even larger.
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