Dictionary 227 (Nuclides) converted from NUBASE2020

> (N. Otsuka, 2023-01-09, Memo CP-D/1067, A11)

Dictionary 227 (Nuclides and natural isotopic mixtures) was updated with the Atomic Mass Evaluation (AME) file and Nuclear Wallet Cards (NWC) file as inputs. This Dictionary has been frozen many years since I do not receive an updated NWC file more than 10 years. Consequently, we sometimes receive an unnecessary error message from ZCHEX (e.g., superheavy element nuclides still defined by * instead of NH, MV and TS).

Following Action 11 of the NRDC 2022 meeting, I have written a program to convert the NUBASE2020 (F.G. Kondev et al., Chinese Physics C 45 (2021) 030001) file (nubase_4.mas20) distributed from the Atomic Mass Data Center (AMDC https://www.anl.gov/phy/atomic-mass-data-resources/) to Dictionary 227.

A test dictionary generated with this new procedure is available as Dictionary 9927 in three formats (Trans, Archive and Backup) from the NDS open area: http://nds.iaea.org/nrdc/ndsx4/trans/dictionaries/. Note that all dictionaries other than 227 are equivalent to Dictionary 9127.

Features of dictionary converter

This converter

- adopts all ground states and metastable states with $\mathrm{T}_{1 / 2} \geq 0.1 \mathrm{sec}$
- adds the spin/parity when a measured value without ambiguity is given
- adds the half-life after conversion to sec when a definite value from other than systematics is given (Consequently, the half-life flag field is abolished.)
- adds flag S for stable nuclide, flag U for unstable nuclide and P for particle-unstable nuclide
- adds the isomeric transition probability for unstable nuclides and the natural isotopic abundance for stable nuclides.

Generation of lines for particle codes

The information of "particles" (e.g., photon, meson, exotic baryon) as well as natural isotopic mixtures must be added from an additional input file. I introduced the following change in these additional dictionary lines:

- Addition of the corresponding particle code as its "A-symbol" when it is defined in Dictionary 33 (e.g., PIO, PIN and PIP for neutral, negative, and positive π mesons, respectively).
- Addition of 0 at the last column of the internal numerical equivalents of natural isotopic mixtures.
- Replacement of 0 or 1 with a unique negative integer for the internal numerical equivalent of particles other than γ.
- Correction of the position of the atomic masses of the natural isotopic mixtures (They were coded as the isotopic abundances.).
- Addition of the particle masses in amu which were converted from the masses in MeV compiled in the latest version of Review of Particle Physics (P.A. Zyla et al., Prog. Theor. Exp. Phys. 2020 (2020) 083C01).

Use of -G, -M1 and -M2 in Dictionary 227

So far, all metastable states were defined with -M and the corresponding ground state was defined without -G in the Dictionary 227:

Example:

TRA 201611	65-TB-156	156 TB	651560	-3.	5.35	D	155924755.181
TRA 201611	65-TB-156-M	156 TB	651561		24.4	H	
TRA 201611	65-TB-156-M	156 TB	651562		5.3	H	
TRA 201611	65-TB-157	157 TB	651570	+1.5	71	Y	156924033.028
TRA 201611	65-TB-158	158 TB	651580	-3.	180.	Y	157925420.947
TRA 201611	65-TB-158-M	158TB	651581	-0.	10.70	S	

I believe it is more convenient for checking purpose to see -G for a ground state which has a metastable state, and -m 1 or -m 2 (instead of -m) when there are two metastable states.

Example:

TRA 202200	$65-\mathrm{TB}-156-\mathrm{G}$	156 TB	651560	-3.0	$4.6224 \mathrm{E}+05 \mathrm{U}$	155.92475
TRA 202200	$65-\mathrm{TB}-156-\mathrm{M} 1$	156 TB	651561	$1.9080 \mathrm{E}+04 \mathrm{U}$	155.92485	
TRA 202200	$65-\mathrm{TB}-156-\mathrm{M} 2$	156 TB	651562	$8.7840 \mathrm{E}+04 \mathrm{U}$		
TRA 202200	$65-\mathrm{TB}-157$	157 TB	651570	$2.2405 \mathrm{E}+09 \mathrm{U}$	156.92403	
TRA 202200	$65-\mathrm{TB}-158-\mathrm{G}$	158 TB	$651580-3.0$	$5.6802 \mathrm{E}+09 \mathrm{U}$	157.92542	
TRA 202200	$65-\mathrm{TB}-158-\mathrm{M}$	158 TB	651581	$1.0700 \mathrm{E}+01 \mathrm{U}$	157.92554	

However, this new flagging creates the following side effects related with ZCHEX and DAN2X4:

Problem 1: Unnecessary error messages from ZCHEX

ZCHEX does not understand nuclide codes defined with M1 and M2.

Example: ZCHEX input and output for EXFOR D4370.006 to 008.

Problem 2: Generation of TRANS dictionary by DAN2X4 with incomplete flags

It is not possible to convert the nuclide codes defined with M1 and M2 to the TRANS dictionary.

Example: -M1 and -M2 of ${ }^{156} \mathrm{~Tb}$ truncated to -M in the TRANS dictionary

$65-\mathrm{TB}-156-\mathrm{G}$	156 TB	651560	-3.0	$4.6224 \mathrm{E}+05 \mathrm{U}$
$65-\mathrm{TB}-156-\mathrm{M}$	156 TB	651561		$1.9080 \mathrm{E}+04 \mathrm{U}$
$65-\mathrm{TB}-156-\mathrm{M}$	156 TB	651562		$8.7840 \mathrm{E}+04 \mathrm{U}$
$65-\mathrm{TB}-157$	157 TB	651570		$2.2405 \mathrm{E}+09 \mathrm{U}$
$65-\mathrm{TB}-158-\mathrm{G}$	158 TB	651580	-3.0	$5.6802 \mathrm{E}+09 \mathrm{U}$
$65-\mathrm{TB}-158-\mathrm{M}$	158 TB	651581		$1.0700 \mathrm{E}+01 \mathrm{U}$

Format of Dictionary 227 produced by the newly developed code

Line	Contents	Format	Archive	Trans	CHEX
1	Code	A12	13-24	1-12	X
	```A-symbol (e.g., 197AU) or particle code (e.g., PIP)```	A6	44-49	14-19	
	Internal numerical equivalent	I7	50-56	21-27	x
	Use flag   Z - not to be used in REACTION SF2,3,7 as well as in DECAY-DATA, DECAY-MON, ENSEC, HALF-LIFE, MOM-SEC, PART-DET, RAD-DET (where the appropriate particle codes are to be used)	A1	57	29	X
	Spin/parity	A6	58-63	31-36	
	State ordering flag   Half-life flag   - about   $\leftarrow$ less than   * - state ordering uncertain	A1	64	38	
	Half-life (in sec)	E11	65-75	39-49	
	Decay flag_Half-life unit   S - stable   U - unstable   P-particle unstable	A3	76-78	50-52	X
	Isotopic abundance or isomeric transition probability	E11	79-89	54-64	
	Atomic weight   (in amu, $1 \mathrm{amu}=931.49410242 \mathrm{MeV}$ )	E12	90-101	N/A	
	Explanation	A21	102-122	N/A	
2	Explanation	A21	N/A	14-34	

The nuclide code has the format $Z-S-A(-X A)$
where: $\quad Z=\quad$ the charge number, up to 3 digits, no leading zeros;
$S=\quad$ the element symbol; 1 or 2 characters;
$A=\quad$ the mass number; up to 3 digits, no leading zeros; a single zero denotes natural isotopic composition.
$X=\quad \mathrm{G}$ for the ground state when a metastable state exists M for the metastable state if only one metastable state exists M1 for the first metastable state M2 for the second metastable state
The code is right adjusted on Z , i.e., the Z ends in the $3^{\text {rd }}$ position, and continuing with no blanks in the code. All metastable states are labelled as -M.

The data associated with a nucleus are taken from the NUBASE Evaluation Nuclear Wallet Cards and the Atomic Mass Evaluation (AME) Tables. All ground states and metastable states defied with half-lives longer than 0.1 sec nuclides given in the Nuclear Wallet Cards are included.

## Comparison of the Archive Dictionary 227 generated from the old procedure and new procedure for boron isotopes

Original (generated from AME 2012 and NWC 2011)

TRA 198202	5-B-0	B	5000		10.8110	Natural boron
TRA 201611	5-B-6	6B	50060	unbound.	47.	6050800.
TRA 201611	5-B-7	7B	50070	1.4	MEV	7029712.000
TRA 201611	5-B-8	8B	$50080+2$.	770.	MS	8024607.326
TRA 201611	5-B-9	9B	50090-1.5	0.54	KEV	9013329.649
TRA 201611	$5-\mathrm{B}-10$	10B	$50100+3$.	STABLE.	19.19.9	10012936.949
TRA 201611	$5-\mathrm{B}-11$	11B	$50110-1.5$		80.1	11009305.355
TRA 201611	$5-\mathrm{B}-12$	12B	$50120+1$.	20.20	MS	12014352.658
TRA 201611	5-B-13	13B	$50130-1.5$	17.33	MS	13017780.166
TRA 201611	5-B-14	14B	50140-2.	12.5	MS	14025404.012
TRA 201611	5-B-15	15B	50150	9.93	MS	15031087.680
TRA 201611	5-B-16	16B	50160-0.	<190.	PS	16039841.663
TRA 201611	5-B-17	17B	50170	5.08	MS	17046989.906
TRA 201611	5-B-18	18B	50180	$<26$.	NS	18055660.189
TRA 201611	5-B-19	19B	50190	2.92	MS	19063100.
TRA 201611	5-B-20	20B	50200			20072070.
TRA 201611	5-B-21	21B	50210			21081290.

New (generated from Nubase2020)


