

UncTools (NS_Lib) - treatment of uncertainties using Monte Carlo

T. Kibédi and Ben Coombes (ANU)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD, 8-12 April 2019, IAEA

Experimental quantitates in ENSDF

Experimental quantitates in ENSDF

2001TuZZ J.K. Tuli, A Manual for Preparation of Data Sets

- □ Single <u>unsigned</u> number: BR, CC, HF, LOGFT, NB, NP, NR, NT, QP
- □ Single <u>signed</u> number: MR, Q-, QA, SN, SP
- □ Standard <u>symmetric</u> uncertainty; two character field (ENSDF Manual V.11):
 - □ an up to two digits integer, up to 99, preferable less than 25
 - □ LT, GT, LE, GE, AP, CA, S
 - DBR, DCC, DE, DHF, DIA, DIB, DIE, DIP, DNB, DNR, DNP, DNT, DQP, DQ-, DS, DSP, DTI
- □ Standard <u>asymmetric</u> uncertainty; two signed integers (ENSDF Manual V.12):
 - DFT, DMR, DT, DNB, DQA
- □ Special rules for E, M, J, S, L fields
- Uncertainty propagation in ENSDF codes:
- Gaussian (analytical) method, only valid for small DX/X values
- □ For multi-variant functions (Ruler, Gabs, Gtol) difficult / impossible to manage

GUM framework

Joint Committee for Guides in Metrology (JCGM, 1993) Guide to the Expression of Uncertainty in Measurement

Concept

- Define the output quantity, the quantity required to be measured.
- Decide the input quantities upon which the output quantity depends.
- Develop a model relating the output quantity to these input quantities.
- On the basis of available knowledge assign probability density - Gaussian normal), rectangular (uniform), etc. - to the values of the input quantities.

 $g_3(\xi_3)$

Probability Density Function (PDF)

Symmetric Normal Distribution: E_y=617.520(10) keV

Asymmetric normal distribution: MR=+2.2(+8-4)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Probability Density Function (PDF)

<u>Limits</u>		Limit	Range	Range Used in MC
	UPPER	<0.5	[0:+0.5]	[0 : +0.5]
		<+0.5	[-infinity : +0.5]	[-4999.5 :+0.5]
		<-0.5	[-infinity : -0.5]	[-5000.5 :-0.5]
	LOWER	>0.5	[+0.5:+infinity]	[+0.5: +5000.5]
		>+0.5	[+0.5:+infinity]	[+0.5: +5000.5]
		>-0.5	[-0.5:+infinity]	[-0.5: +4999.5]

PDF uniform over the entire range

- Infinite range: <u>PDF = Zero</u>
- □ Replace infinity with a sufficiently large range: Infinity ~ 10000 Limit value^{^b/_a}

Monte Carlo simulations to obtain the output quantity

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD, 8-12 April 2019, IAEA

Mixed ICC

BrIcc 177 Hf 71.6418(6) keV E1+M2, MR: -0.018(9)

Skewness & Kurtosis

Skewness - degree of distortion from any symmetrical, like normal distribution

□ Mean - arithmetic mean

$$\gamma_1 = \frac{\sum_{i=1}^N (x - \overline{x})^3}{\sigma^3}$$

Median - middle number of the ordered list

□ Mode - where PDF has maximum

Normal distribution: mode = median = mean

Skew positive: mode < median < mean

Skew negative: mode > median > mean

Kurtosis (from <u>Greek</u>: κυρτός, kyrtos or kurtos, meaning "curved, arching") is a measure of the "tailedness" of the probabilit Leptokurtic Normal $k = \frac{\frac{1}{N}\sum_{i=1}^{N}(x-\overline{x})^4}{1-|x|^4}$ Platykurtic Normal distribution: k = 3 Platykurtic: k < 3 Leptokurtic: k > 3

Mixed ICC

BrIcc ¹⁷⁷Hf 71.6418(6) keV E1+M2, MR: -0.01<u>8(9)</u>

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD, 8-12 April 2019, IAEA

		GABS	Python	UncTools
¹⁷⁷ Lu B-	Input file	gabs-test.ens	pycalc-test.py	gabs-test.unc
12 G`s for	NR	0.0508(21)	0.0508(21)	0.0509(22)
normalisation	%IG(150.399)	18.0 (5)	18.0 (5)	18.0 (5)

Proposal of propagation uncertainties including limits using MC

<u>Advantage</u>

- Consistent treatment of all cases, much simpler program logic (no more jungle of IF statements)
- Sound statistical approach even for larger relative uncertainties and limits

Disadvantage

- □ CPU intensive
- □ Mean value may not agree with directly calculated value

Questions/Problems

- □ Sampled / output values could be nonphysical: $T_{1/2}$ =0.15(7) ns
- Some uncertainties in ENSDF expected to be symmetrical (DBR, DCC, DE, DHF, DIA, DIB, DIE, DIP, DNB, DNR, DNP, DNT, DQP, DQ-, DS, DSP, DTI)