

Centre Report from India – ENSDF evaluations and Horizontal Evaluations

Ashok Kumar Jain^{1,2}, Sukhjeet Singh², Paresh K. Joshi³ and Gopal Mukherjee⁴

¹Amity Inst. Nucl. Sc. & Tech., Amity University, NOIDA ²Akal University, Talwandi Sabo, Punjab ³HBCSE, Tata Inst. Fundamental Research, Mumbai ⁴Variable Energy Cyclotron Center, Kolkata

Moved from Here

TO HERE

UNIVERSITY CAMPUSES

AMITY UNIVERSITY New Delhi NCR Campus

60 acre sprawling, most hi-tech Campus
4.1 million sq. ft. of buildings

FACTS AT A GLANCE

Amity is one of India's largest education groups

• 170,000

most brilliant students

• 6,000

faculty & scientists

10 Universities

in Delhi-NCR, Lucknow, Gurgaon, Jaipur, Mumbai, Gwalior, Kolkata, Raipur, Ranchi & Patna

150+ Institutions

in almost every facet of education

Overseas Campuses

in London, New York, San Francisco, Seattle, Dubai, Abu Dhabi, Singapore, Mauritius, China, South Africa, Amsterdam & Kenya

- 25 Schools & Preschools
- **1,200** Acres of campuses

- Member of AACSB
- 7 Million Sq. Ft. of buildings
- 300 Programmes covering 60 disciplines
- 970 Patents filed by faculty in the last years
- 2000 Case Studies developed by faculty in the last years
- 300 Research Projects funded by the Govt.
- 100,000

Alumni across the world

Mass Chain	Year of Evaluation	Reference/Journal	Earlier Evaluator	New data sets to be included/Present status as on March 14, 2019
215	2013	NDS 114, 2023 (2013)	B. Singh et al.	13
216	2007	NDS 108, 1057 (2007)	C.Wu	09
217	2003	NDS 147, 382 (2018)	F.G. Kondev et al.	NIL
218	2006	NDS 107, 1027 (2006)	A.K. Jain and Balraj Singh	Evaluated at ICTP Workshop, 2018 (B.Singh)
219	2001	NDS 93, 763 (2001)	E. Browne	Submitted to NNDC
220	2011	NDS 112, 1115 (2011)	E. Browne and JK Tuli	05
221	2007	NDS 108, 883 (2007)	Ashok Jain, Sukhjeet Singh, Suresh Kumar, Jagdish Tuli	Submitted (Dec. 2018)
222	2011	NDS 112,2851 (2011)	Sukhjeet Singh, AK Jain, Jagdish Tuli	04
223	2001	NDS 93, 763 (2001)	E. Browne	Being evaluated BRNS workshop, HBCSE-2016
224	2015	NDS 130,127 (2015)	Sukhjeet Singh & Balraj Singh	02
225	2009	NDS 110, 1409 (2009)	A. K. Jain , R. Raut , J. K. Tuli	02
226	1996	NDS 77, 433 (1996)	Y.A.Akowali	Beingevaluated
227	2016	NDS 132, 257 (2016)	Kondev et al.	02
228	2014	NDS 116, 163 (2014)	Khalifeh Abusaleem	01
229	2008	NDS 109, 2657 (2008)	E. Browne and JK Tuli	10

Mass chain evaluations - Progress

Mass chains evaluated (Published/Submitted)

- Nuclear data sheets of A=221 (Submitted to NDS-2018)
- Nuclear data sheets of A=219 (Submitted to NDS-2018)
- Nuclear data sheets of A=217, (NDS 147, 382 (2018)

(A=217 mass chain was evaluated as a part of ICTP workshop -2016 : Sushil Kumar, Akal Univ and Soumen Nandi, Kolkata participated contributed in the evaluation)

• Nuclear Data Sheets of A=218 (Submitted by Balraj Singh)

(A=218 mass chain was evaluated as a part of ICTP workshop-2018: Ritwika Chakraborti, (Mumbai), Debasmita Kanjilal(Kolkata), Indu Bala,(IUAC, New Delhi), Soumen Nandi (VECC, Kolkata) participated in this evaluation work).

Mass chains in progress and in the final phase

- Nuclear data sheets of A=226
- Nuclear data sheets of A=223

Horizontal evaluations

Horizontal evaluations

1. Nuclear radius parameters (r_0) for even-even alpha emitters

Sukhjeet Singh, Sushil Kumar, Balraj Singh and A.K. Jain,

(Submitted to Nuclear Data Sheets, Feb. 2019)

The decay data for **186 even-even alpha emitters** have been analyzed to extract nuclear radius parameters (r_0) using Preston's spin-independent formalism for alpha decay probabilities. A suite of databases available at the website of National Nuclear Data Center (NNDC), Brookhaven National Laboratory, USA was consulted to ensure the completeness and reliability of available experimental data pertaining to alpha decays of all the even-even nuclides in the entire nuclear landscape. After a comprehensive literature review, **26 new even-even alpha emitters** have been added to the previous evaluation published by Y.A. Akovali [1998AK04].

2. Table of MR and AMR bands

Sukhjeet Singh, Sushil Kumar, Deepika Choudhuri, Balraj Singh, A.K. Jain

(In Progress)

We present a recent picture of all the experimentally observed MR bands pertaining to mass region 58<A<206.

In the earlier compilation by Amita *et al.* (2000), there were total 120 MR bands in 56 nuclei and another subsequent compilation consisting of total 178 bands observed in 76 nuclides was published online (2006).

Presently, we have updated the earlier compilation by including 41 MR bands observed in 31 new nuclides. Additionally, 19 MR bands (already available in earlier compilation) have been extended to higher spins. So, in totality, we added 358 M1 and 196 E2 transitions in the previous compilation. The maximum number (total 55) of MR bands have been identified in the Pb isotopes. Among all the 219 MR bands, total 160 MR bands are of regular nature whereas and 53 show irregular behavior, 14 bands exhibit signature splitting and 77 show a back-bending phenomenon.

In the present compilation, we have also extracted AMR bands with their probable configuration assignments. Till date, 16 AMR bands have been observed in 12 different nuclides. The lightest and heaviest nuclides where AMR bands have been reported are ¹⁰⁰Pd and ¹⁴⁴Dy respectively. The maximum number (total 5) of AMR bands are observed in Cd and In isotopes.

3. Atlas of Nuclear Isomers - Update

A.K. Jain, Bhoomika Maheshwari, Swati, Alpana Goel, Balraj Singh

Our earlier Atlas published in **Nuclear Data Sheets 128 (2015) 1–130** contains a listing of 2469 isomers having a half-life greater than 10 ns.

This is an active area of research with many measurements being reported. Since 2015, we have come across 70 new cases of nuclear isomers. Three cases reported earlier have been discarded. We have already compiled these cases and the data. An updated Atlas will be ready soon.

This Atlas has led us to many new physics results.

- 1. Seniority isomers decaying by E1 decay mode predicted and seen for the first time.
- 2. B(E2) anomaly in the decay of the first 2+ levels of Sn isotopes resolved for the first time.
- 3. Generalized seniority scheme shown to be more broadly valid.

The limit of 10 ns was used in contrast to ENSDF where the limit has been 100 ns. We feel that 10 ns is a very useful limit although we had to use even lower halflives in showing the existence of odd-multipole decaying seniority isomers.

New Isomers - 70

²⁶ p	120 _T	¹⁶⁰ Nd	¹⁷⁹ T1
1	100	100	11
⁵² Co	¹²⁵ Sn	¹⁰⁰ Sm	¹⁸⁴ Tl: two cases
⁷² Co	¹²⁷ Cd	¹⁶¹ Pm	¹⁸⁹ Re: two cases
⁷⁶ Co: two cases	¹²⁸ Cd	¹⁶¹ Sm	¹⁹¹ Re: two cases
⁷⁹ Zn	¹³⁰ In	¹⁶² Sm	¹⁹⁵ Bi: two cases
⁹² Rh	¹³³ Xe	¹⁶³ Eu	²⁰³ At: two cases
⁹⁴ Rb	¹³⁵ Ba	¹⁶³ Gd	²⁰⁸ Pb : three cases
⁹⁶ Y	¹⁴⁰ Sb	¹⁶⁴ Gd	²⁰⁹ Tl: two cases
⁹⁶ Cd	¹⁵⁰ Pr	¹⁶⁵ Tb	²¹² Ra
⁹⁷ Cd	¹⁵² Pr	¹⁶⁶ Tb	²¹³ Ra: two cases
⁹⁸ Y two cases	¹⁵⁶ Lu	¹⁶⁷ Tb	²²⁰ Pa: two cases
⁹⁸ Ag	¹⁵⁸ Nd	¹⁶⁸ Tb	²⁵⁴ Rf: two cases
⁹⁸ Cd	¹⁵⁸ Pm	¹⁷² Dy	²⁵⁸ Rf: two cases
¹¹⁹ Sn	¹⁵⁹ Pm	¹⁷² Ta: two cases	

Isomers with modified half-life - 62

¹⁶ N	⁹⁴ Ru	¹³² Te: two cases	¹⁸⁴ Pt
²⁶ Al	⁹⁴ Pd: two cases	¹³² Xe	¹⁸⁷ Re
³¹ Mg	⁹⁶ Pd	¹³⁴ Te	¹⁹¹ Re
³⁴ A1	⁹⁶ Cd	¹³⁴ Nd	¹⁹³ Bi: three cases
⁵⁸ Co	98Y:two cases	¹³⁵ Ba	¹⁹⁴ Po
⁶⁵ Fe	⁹⁹ Tc	¹³⁶ Xe	¹⁹⁵ Bi
⁶⁶ Co	¹⁰⁷ Cd	¹³⁶ Ba	¹⁹⁹ Pt
⁷⁰ Br	¹¹⁹ Sn	¹³⁷ Ba	²⁰⁰ Pb
⁷² Co	¹²¹ Sn	¹⁵² Tm	²⁰³ At
⁷⁶ Ni	¹²⁴ Sn	¹⁵³ Ho	²⁰⁸ Pb
⁹⁰ Nb	¹²⁵ Sn	¹⁵⁹ Sm	²¹⁰ Pb
⁹⁰ Mo	¹²⁷ Xe	¹⁷³ Ta:two cases	²²⁹ Th
⁹² Ru	¹³⁰ In	¹⁷⁹ Tl	²³⁵ U
⁹³ Ru	¹³¹ La	¹⁸⁰ Ta	²⁵¹ Fm

Rejected cases - 3

61	75	¹³⁶ Pm	27.3+X	This isomer has now been deleted from the table as it was a misprint.
57	73	¹³⁰ La	110.4 keV the latter gro	isomer with T1/2=17(5) ns from 1996XU01 is not verified by 2014IO01, as oup saw only a prompt transition with an upper limit of half life set at <10 ns. Hence, this isomer is removed from our compilation.
30	43	⁷³ Zn	The i	somer with 5.8 s half life is removed based on 2017VE05 work.

Publications resulting from Isomer work

- Atlas of Nuclear Isomers

 A. K. Jain, B. Maheshwari, S. Garg, M. Patial and B. Singh, Nuclear Data Sheets 128, 1 (2015)
- 2. 6+ isomers in neutron rich Sn isotopesB. Maheshwari, A. K. Jain and P. C. SrivastavaPhys. Rev. C 91, 024321 (2015).
- Odd-tensor electric transitions in high-spin Sn-isomers and generalized seniority B. Maheshwari and A. K. Jain Phys. Lett. B 753, 122 (2016).
- 4. Asymmetric Behavior of the B(E2; 0⁺ → 2⁺) values in ¹⁰⁴⁻¹³⁰Sn and gen seniority B. Maheshwari, A. K. Jain and B. Singh Nucl. Phys. A 952, 62 (2016).
- Goodness of Generalized Seniority in Semi-magic Nuclei A. K. Jain and B. Maheshwari Nuclear Physics Review 34, 73 (2017)
- 6. Generalized Seniority States and Isomers in Tin Isotopes A. K. Jain and B. Maheshwari Physica Scripta 92, 074004 (2017).
- 7. $\Delta v = 2$ seniority changing transitions in yrast 3⁻ states and B(E3) systematics of Sn isotopes B. Maheshwari, S. Garg and A. K. Jain Pramana-Journal of Physics (Rapid Comm.)89, 75 (2017)
- 8. Generalized Seniority Schmidt Model and the g-factors in Semi-magic nuclei R. Mahashwari and A. K. Jain, under review

Additional points

Additional points for the Isomer Update:

- It has been suggested by Balraj Singh that we must further lower the half-life limit of isomers to 1ns. This entails including 900 more cases as per the ENSDF data base. We would like to have the opinion of the network members if it is a very useful idea.
- Present Atlas of Isomers has been read almost 800 times and cited 16 times only.

Financial Support:

- Travel support from IAEA-NDS to attend NSDD meeting 2019.
- Project support to Sukhjeet Singh at Akal University from B.R.N.S. (Dept. of At. Energy, Govt. of India) to carry out ENSDF evaluation.

DST-SERB School on "Role of Symmetries in Nuclear Physics"

October 10 - 23, 2019

Amity Institute of Nuclear Science & Technology, Amity University Uttar Pradesh, Noida, India

Sponsored By:

Science and Engineering Research Board, Department of Science & Technology (Government of India)

Chief Patron: Dr. Ashok.K. Chanhan, Founder President Patron: Dr. Atal Chanhan, Chancellor Co-Patron: Dr. Baboinder Shukla, Vice Chanceflor

National Planning Committee:

Prof. Amit Roy (IACS, Kolkata), Chairman Prof. A.K. Jsin (Amity Univ. Noida) Prof. R. Palit (TIFR, Mambad) Prof. B.K. Agented (SINP, Kolkata) Dr. P. Sugathan (IUAC, New Dellei) Prof. Samit Mandal (Delhi University, Delhi) Prof. M. Balasubramaniam Bharthiar Univ, Coimbators Dr. Amitave Roy (SERB), Program Coordinator Dr. Nilotpal Ghosh (SERB), Member Secretary

Local Organizing Committee:

Prof. A.N. Garg Prof. Tejram Prof. E.S. Sharma Dr. Arptita Datta Ma. Archana Yadav Mr. Prakharesh Awasthi

Aims of the School

Symmetries are all pervasive particularly in nuclear physics. Yet they continue to puzzle the young minds. The two week special school in nuclear physics theory will teach the most fundamental concepts as well the recent advances to emphasize the crucial role of symmetries and symmetry breaking.

Speakers and Topics to be covered

- 1. A.K. Jain/A. Goel (Amity, Noida): Role of Symmetries in Nuclei An Introduction
- 2. V.K.B. Kota (PRL, Ahmedabad): Lie Algebras and Group-Subgroup Chains in Nuclei
- 3. B.K. Agrawal (SINP, Kolkata): Pairing, Quasi-Spin and Seniority
- Piet van Isacker (GANIL, France): Symmetries of Interacting Fermion and Interacting Boson Models
- 5. S.R. Jain (BARC, Mumbai): Random Matrix Theory in Nuclei
- 6. Pan Feng (Dalian, China): Shape (Phase) Transitions in Nuclei
- 7. Javid Sheikh (Cluster Univ, Srinagar): Symmetry Restoration in Nuclei

The speakers will be supported by additional experienced faculty and tutors to support/enhance the learning experience of the participants.

Call for applications

Applications are invited from Ph.D. students, beginning post-doctoral fellows, young faculty members, and highly motivated M.Sc./ Integrated students. Travel by train (First Class/AC-III) and local hospitality will be provided to all the participants. Foreign participants are also invited but only local hospitality can be provided to them.

Online application forms can be found at www.amity.edu/ainst/serbschool The Research Supervisors/Head of Department should send the recommendations preferably by email to the directors of the school.

Deadline for receiving applications is: June 10, 2019

Contact: Directors of the school

Prof. Alpana Goel, Director, AINST agoell@amity.edu Tel:0120-4392117

Prof. A.K. Jain, Advisor, AINST <u>akjain1@amity.edu</u> Tel:0120-4392414

Thank You