

BetaShape

NSDD Meeting April 2019 | Xavier Mougeot

- Handles β and ε transitions
- Provides mean energies of β spectra, log *ft* values, β^+ and ε probabilities
- Propagates uncertainties from input parameters
- Reads and writes ENSDF files (*Evaluated Nuclear Structure Data File*)

However

LogFT

- Too simple analytical models \rightarrow lack of accuracy
- Forbiddenness limitation (allowed, first- and second- forbidden unique)
- Users now require β spectra and correlated v spectra
- Users now requires detailed information for many subshells in ε

51

Beta decays

NSDD Meeting 2019 | X. Mougeot | 3

- Behrens and Bühring formalism
- > Dirac equation solved numerically for beta particles (with spherical nucleus)
- > Bühring screening correction with Salvat's potentials
- Allowed and forbidden unique transitions
- > Forbidden non-unique transitions with ξ approximation
- > Precise radiative corrections from Hardy's study of superallowed transitions
- Database of experimental shape factors (131 transitions)
- > Propagation of uncertainties on Q-values and level energies
- Reads and writes to/from ENSDF files
- Provides beta and neutrino spectra for each transition, total spectrum for a radionuclide, mean energies, log *ft* values and report files

list ^{Ceatech}

Analytical screening corrections

Radiative corrections

NSDD Meeting 2019 | X. Mougeot | 7

• Single and total β^+/β^- and $\nu_e/\overline{\nu}_e$ spectra

X. Mougeot, Phys. Rev. C 91, 055504 (2015)

• Mean energy $\overline{E} = \int_0^{E_0} E \cdot N(E) dE / \int_0^{E_0} N(E) dE$

• Log *ft* value
$$\forall f_{\beta^-} = \int_1^{W_0} N(W) dW$$

 $\Rightarrow f_{\varepsilon/\beta^+} = f_{\varepsilon} + f_{\beta^+}$ + partial half-life from data: $t_i = T_{1/2}/P_{\beta}$

For allowed and forbidden unique transitions

$$\frac{I_{\varepsilon}}{I_{\beta^+}} = \frac{\lambda_{\varepsilon}}{\lambda_{\beta^+}} = \frac{C_{\rm ns} \sum_{x} n_x C_x f_x}{C_{\rm ns} \int_1^{W_0} N(W) dW} \approx \frac{f_{\varepsilon}}{f_{\beta^+}}$$

 C_x : lepton dynamics

 $C_{\rm ns}$: nuclear structure (allowed, forbidden unique) n_x : relative occupation number of the orbital, not accounted for in the LogFT program

$$\rightarrow \underline{\log ft} = \log\left(\frac{f_{\varepsilon} + f_{\beta^+}}{I_{\varepsilon} + I_{\beta^+}} T_{1/2}\right)$$

$$= \log\left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2}\right) + \log\left(\frac{1 + f_{\varepsilon}/f_{\beta^+}}{1 + I_{\varepsilon}/I_{\beta^+}}\right)$$

$$\approx \log\left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2}\right)$$

Examples of improved calculations

These two transitions are calculated as allowed by the LogFT program.

list

Electron capture decays

NSDD Meeting 2019 | X. Mougeot | 10

Relativistic electron wave functions for the atomic bound states are needed.

The method used was initially developed for the atomic exchange effect in β^{-} decay calculations.

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

Dirac equation is solved numerically

• Local power series expansion

$${f(r) \\ g(r)} = \frac{(pr)^{k-1}}{(2k-1)!!} \sum_{n=0}^{\infty} {a_n \\ b_n} r^n$$

- **Coulomb potential = extended nucleus** (uniformly charged sphere)
 - + screened potential (Coulomb influence of electrons)
 - + exchange potential (indistinguishability of fermions)
- Iterative procedure to reach atomic energies from relativistic DFT approach with electron correlations

S. Kotochigova, Phys. Rev. A 56, 5191 (1997)

- \rightarrow Extrapolation from U to Z=120
- \rightarrow Tabulation of parameters for fast calculation

Overlap effect

ST

ceatech

Variation of nuclear charge: the **spectator electrons** contribute to the total decay rate.

 \rightarrow Imperfect overlap between initial and final atomic wave functions

Exchange effect

Vacancy in the K shell?

+ M₁, etc.

Two approaches for overlap and exchange corrections

J.N. Bahcall, Phys.	E. Vatai, Nucl. Phys.
Rev. 129, 2683 (1963)	A 156, 541 (1970)

- **Bahcall**: only K, L₁ and M₁ shells
- Vatai: up to N₁ shell; other shells taken into account for overlap

universite

- No multiple exchange process
- Best results with Vatai's approach, Bahcall's used to assess uncertainties

Generalization of the two approaches from Bahcall and Vatai

$$B_{n\kappa} = \left| \frac{b_{n\kappa}}{\beta_{n\kappa}} \right|^{2} \text{ with } \mathbf{Exchange}$$

$$b_{n\kappa} = t_{n\kappa} \left[\prod_{m \neq n} \langle (m, \kappa)' | (m, \kappa) \rangle \right] \left[\beta_{n\kappa} - \sum_{m \neq n} \beta_{m\kappa} \frac{\langle (m, \kappa)' | (n, \kappa) \rangle}{\langle (m, \kappa)' | (m, \kappa) \rangle} \right]$$
Bahcall
Vatai

$$t_{n\kappa} = 1$$
Vatai

$$t_{n\kappa} = \langle (n, \kappa)' | (n, \kappa) \rangle^{n_{n\kappa} - 1/2|\kappa|} \left[\prod_{\substack{m, \mu \\ \mu \neq \kappa}} \langle (m, \kappa)' | (m, \kappa) \rangle^{n_{m\kappa} - 1} \right] \left[\prod_{\substack{m, \mu \\ \mu \neq \kappa}} \langle (m, \mu)' | (m, \mu) \rangle^{n_{m\mu}} \right]$$
No overlap

No shake-up and shake-off, but **more comprehensive** approach

overestimation of others

list

Ceatech

CARNOT CEA LIST UNIVERSITE PARIS-SACLAY

Shaking effects

Each electron has only three possible final states

- Spectator: same original quantum numbers
- Shake-up: excitation to an unoccupied bound state
- Shake-off: ionization to a continuum state

Creation of a secondary vacancy

For a given captured electron, **sum of shaking probability for each atomic electron**

The **capture** process induces that the **daughter** atom is in an **excited state** \rightarrow Influence of the hole on the bound wave functions

First order perturbation theory $(\mathcal{H}_0 + \mathcal{H}')|(i,\kappa)'\rangle = (E_0 + E')|(i,\kappa)'\rangle$

Initial: parent atom

Perturbation: the electron (n, κ) is captured

$$\mathcal{H}' = \frac{\alpha}{r} - \langle (n,\kappa) | \frac{\alpha}{|\overline{r_{n\kappa}} - \vec{r}|} | (n,\kappa) \rangle \longrightarrow | (i,\kappa)' \rangle = | (i,\kappa) \rangle - \sum_{j \neq i} \frac{\langle (j,\kappa) | \mathcal{H}' | (i,\kappa) \rangle}{W_j - W_i} | (j,\kappa) \rangle$$

The correction of the hole effect is thus only applied through the **asymmetric overlaps**

 $\langle (j,\kappa)'|(i,\kappa)\rangle = \frac{\langle (j,\kappa)|\mathcal{H}'|(i,\kappa)\rangle}{W_j - W_i}$

List Forbidden unique transitions

Atomic effects in beta decays

NSDD Meeting 2019 | X. Mougeot | 19

Metallic magnetic calorimetry

System cooled down to 10 mK

list

List Atomic effects: ⁶³Ni

21 CARNOT CEA LIST UNIVERSITÉ PARIS-SACLAY

Inclusion of nuclear structure

NSDD Meeting 2019 | X. Mougeot | 22

Beta transition probability per beta particle energy

$$P(W_e) dW_e = \frac{G_{\beta}^2}{2\pi^3} F_0 L_0 C(W_e) p_e W_e (W_0 - W_e)^2 dW_e$$

Fermi Shape
function factor

H. Behrens, W. Bühring, Electron Radial Wave functions and Nuclear Beta Decay, Oxford Science Publications (1982)

Theoretical shape factor

$$C(W_e) = \sum_{Kk_ek_\nu} \lambda_{k_e} \left[M_K^2(k_e, k_\nu) + m_K^2(k_e, k_\nu) - \frac{2\mu_{k_e}\gamma_{k_e}}{k_eW_e} M_K(k_e, k_\nu) m_K(k_e, k_\nu) \right]$$

This formulation allows the calculation of **beta transition of every nature** (allowed, forbidden unique and forbidden non-unique).

Decay constants, partial half-lives, branching ratios and log *ft* values are integrated quantities of the beta spectrum.

list

(V-A) weak interaction

- > Current-current interaction.
- > Multipole expansions of both nuclear and lepton currents.

Impulse approximation

- At the moment of the decay, the nucleon is assumed to feel only the weak interaction.
- Other nucleons are assumed to be spectators with respect to the weak decay process.

Fermi theory

- Vertex of the weak interaction is assumed to be pointlike.
- > No W^{\pm} boson propagation.
- > The effective coupling constant G_F is used.

Nuclear matrix elements are embedded within M_{κ} quantities.

In the case of single-particle matrix elements, an analytical integration over the transferred momentum q in the M_K quantities can be conducted.

 \rightarrow Input from a nuclear structure model is necessary

In principle, the multipole expansion is unlimited. However, the lowest orders should contribute more.

Recommendation from Behrens and Bühring is to consider only the terms with $K = K_{\min}$, $K_{\min} + 1$ and $(k_e + k_v) = K$, K + 1. This recommendation is relevant for a precision at nearly the percent level but additional terms can be necessary.

A specific algorithm has thus been developed in order to control the precision of the calculation. A pre-analysis is performed at $W_0/2$ and many possibilities are tested into nested loops:

- Loop on k_e from 1 to $K_{\min} + 4$.
- Loop on all possible values of *K*.
- Loop on all possible values of k_{ν} for definite values of k_e and K.
- Loop on all possible values of *L* and *s* for definite values of *K*.

Then, each $C(W_0/2; k_e, K, k_v)$ which contributes to the total shape factor $C(W_0/2)$ more than a fixed precision limit – 10⁻⁵% in present work – is selected.

Only these relevant (k_e, K, k_v) combinations are calculated for the requested energies over the entire spectrum.

First forbidden non-unique transition of ²⁰⁹Pb

list

Third forbidden unique transition of ⁴⁰K decay

list

Allowed transition of ¹⁴C decay

$$\begin{split} {}^{14}_{6}\text{C}_8 &\to {}^{14}_7\text{N}_7 \\ 0^+ &\to 1^+ \\ \big| \pi, 1p_{1/2}; \nu^{-1}, 1p_{1/2} \big\rangle \\ \mathcal{C}(1) &= \sqrt{3} \\ \\ \text{E}_0 &= 156, 476(4) \text{ keV} \\ \text{t}_{1/2} \text{ exp.} &= 5700(30) \text{ a} \\ \\ \text{t}_{1/2} \text{ NR} &= 0,009 \text{ a} \\ \\ \text{t}_{1/2} \text{ R} &= 0,012 \text{ a} \end{split}$$

list

Perspectives

European projects

Theoretical shape factors

European EMPIR project MetroBeta (2016-2019): improved beta decay calculations. Inclusion of more precise nucleon wave functions from a semi-phenomenological nuclear mean-field approach, still in spherical symmetry. Applied also to electron captures.

Electron captures

European EMPIR project MetroMMC (2018-2021): improved electron capture calculations. Development of an atomic code for high precision wave functions. Will be used afterwards for atomic effects in beta decays.

Future

- Nuclear component: introduction of nuclear deformation and pairing correlations, which is expected to inherently account for configuration mixing.
- Atomic component: extension of exchange effect to forbidden beta decays.
- Uncertainties: estimate of theoretical components and propagation via a Monte Carlo method.

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019