

Status of the Decay Data Evaluation Project (DDEP)

Xavier Mougeot (on behalf of Mark A. Kellett)

NSDD 2019, Vienna, 8 – 12 April 2019

Outline

The Decay Data Evaluation Project (DDEP) Membership Data availability

Improvements to Beta Spectra: The MetroBeta Project

Conclusions

Decay Data Evaluation Project (DDEP)

A small number of decay data evaluation specialists, mainly from the metrology community:

Mark A. Kellett (Coordinator) (to be replaced by Yann Kergadallan)	Xavier Mougeot	Christophe Dulieu (IT support)
	LNHB, France	
Alan L. Nichols?	Aurelian Luca	Xiaolong Huang
Surrey University, UK	IFIN, Romania	CIAE, China
Nikolai Kuzmenko	Monica Galan	Andy Pearce & Arzu Arinc (to be replaced by Rob Shearman)
KRI, Russia	Consultant	NPL, UK
Members who joined in 2016:		
Brian Zimmerman	Herbert Janssen?	Haoran Liu
NIST, USA	PTB, Germany	Metrology Institute, China
Additional support: Tibor Kibódi (ANU	Australia) Brice & Bricel	Mixing codes and others from the

Additional support: Tibor Kibédi (**ANU, Australia**) – *Brlcc & BrlccMixing codes* and others from the wider community who help in the review process, e.g. Balraj Singh

list

Ceatech

Publications of decay scheme data

http://www.bipm.org/fr/publications/monographie-ri-5.html

Mini Table of Radionuclides 2015

Current edition of the Mini Table of Radionuclides - published in March 2015 Sold and distributed by EDP Sciences (25 €) ~2 000 copies sold to date

61 Cu	T _½ : 3,3 Copper/C	66 (33) uivre	h			
Descendant(s): (β*, ε, 100 %) Ni-61 Q*: 2237,5 keV						
Electrons (10 lin	es) - Σ(l _e) omit	ted: 0.6	96			
Energy (keV)	Intensity (%)	Type	Origin			
0,6 - 1	51,2	Auger I	Ni-61			
6,3 - 8,3	20,0	Auger H	K Ni-61			
Beta + (6 lines) -	Σ(I ₈₊) omitted:	0,035 %				
E max. (keV)	Eavg. (keV)	Intens	ity (%)			
559,5	238,5	2	, 52			
932,5	398,9	5	, 4			
1 148,1	493,8	2	,1			
1 215,5	523,8	51	,6			
X (4 lines) - Σ(I _X)	omitted: 0,44	%				
Energy (keV)	Intensity (%)	Туре	Origin			
7,46	4,33	X _{K02}	Ni-61			
7,48	8,4	X _{K01}	Ni-61			
8,3	1,76	X _{K'B1}	Ni-61			
Gamma (34 lines	s) - Σ(I _v) omittee	d: 1,9 %				
Energy (keV)	Intensity (%)	Туре	Origin			
67,41	4,0	Y	Ni-61			
282,96	12,0	Y	Ni-61			
373,05	2,09	Y	Ni-61			
511	123	γ±				
588,61	1,15	Y	Ni-61			
656,01	10,4	v	Ni-61			
908,63	1,12	v	Ni-61			
1 185,23	3,6	Ŷ	Ni-61			
Production mode Possible impurities						
Ni-61 (p, n) Cu	J-61 -					
Zn-64 (p, α) Cι	u-61 -					
Cu-63 (γ, 2n) Cu-61 -						
Reference: CEA/LNE-LNHB - 2013						

95 Descendent(s): (Americ	ium / Ar	néricium			
Q ^a : 5637,82 keV	/ /	// (2,144	rx 10 a)			
Alpha (23 lines) - Σ(I ₀) omitted: 0,7 %						
Energy (keV)	Intensity (%)	Туре	Origin			
5 388,25	1,66	α	Am-241			
5 442,86	13,23	α	Am-241			
5 485,56	84,45	α	Am-241			
Electrons (48 li	nes) - Σ(I _e) omit	ted: 2,6	96			
Energy (keV)	Intensity (%)	Туре	Origin			
6,3	14	ecL	Np-237			
6 - 13,5	33,4	Auger I	L Np-237			
13,2	15,9	ecL	Np-237			
21,6	3,7	ec M	Np-237			
23,4	8,8	ecL	Np-237			
28,5	4,0	ec M	Np-237			
32,2	1,08	ec N	Np-237			
38,7	2,3	ec M	Np-237			
39,5	30,2	ecL	Np-237			
54,8	8,12	ec M	Np-237			
$X(9 \text{ lines}) = \Sigma(1)$ omitted < 0.01.96						
Energy (keV)	Intensity (%)	Туре	Origin			
11,89	0,844	Xu	Np-237			
13,85	13,02	XLa	Np-237			
15,88	0,384	XLn	Np-237			
16,96	18,58	XLB	Np-237			
21,16	4,83	× _{Lγ}	Np-237			
Gamma (179 lin	ies) - Σ(IJ) omitt	ed: 0.29	96			
Energy (keV)	Intensity (%)	Туре	Origin			
26,34	2,31	Y	Np-237			
59,54	35,92	Ŷ	Np-237			
Production mo	de Possi	ble impu	rities			
Pu-241 (R) Am-241 T/6 = 14.33 a						

New website: http://www.lnhb.fr/en/

Filter data: Enter value Image: Second state of the sec

list

Ceatech

New website: http://www.lnhb.fr/en/

Pen	2)		Commonts (2)	Table (2)	Tune (2)	UnData	In (2)	7	ida	Nucli
filos	.)	ASCITILIES	comments (;)	Table (:)	Type (:)	оррасе	III (?)	2	10e	Nuch
1163		E P	С	T	1	04/09/2006	3	1	зН	H-3
		E P	С	T.	1	18/02/2004	1	4	⁷ Be	Be-7
		E P	С	Τ.	2	03/11/2011	1	6	¹¹ C	C-11
		E P	С	Τ.	1	22/11/2012	7	6	¹⁴ C	C-14
		E P	С	T.	1	08/04/2004	1	7	¹³ N	N-13
		E P	с	T.	1	01/06/2004	1	8	¹⁵ O	O-15
		E P	С	т	2	01/09/2014	1	9	¹⁸ F	F-18
		E P	С	т	3	06/08/2009	5	11	²² Na	Na-22
		E P	С	т	2	16/06/2014	1	11	²⁴ Na	Na-24
		E P	с	т	1	24/07/2003	99	13	²⁶ Al	Al-26
		E P	С	т	1	08/04/2004	1	15	³² P	P-32
		E P	С	т	1	08/04/2004	1	15	³³ P	P-33
		E P	С	т	Ν	27/02/2012	7	16	³⁵ S	S-35
		E P	С	т	Ν	04/06/2012	7	17	³⁶ Cl	CI-36
		E P	С	т	Ν	16/10/2012	7	18	³⁷ Ar	Ar-37
		E P	С	т	3	04/05/2010	6	18	⁴¹ Ar	Ar-41
		E P	С	т	2	01/08/2012	5	19	⁴⁰ K	K-40
		E P	С	т	Ν	24/04/2013	8	20	⁴¹ Ca	Ca-41
		E P	С	Τ.	Ν	11/04/2012	7	20	⁴⁵ Ca	Ca-45
		E P	С	T.	1	27/04/2004	1	21	⁴⁴ Sc	Sc-44
		E	С	т	2	01/09/2014	1	21	⁴⁶ Sc	Sc-46

PenNuc add-on to PENELOPE

General problem: simulation of radioactive sources (beta +/-, gamma-rays, X-rays, Auger electrons). Developed by CIEMAT and PENELOPE team.

Given a radionuclide, decay scheme can be obtained in pennuc format from LNHB website (DDEP evaluations).

- Allows easy evaluation of dose or energy spectrum deposited in a detection system (no need to implement all the decay scheme).
- Propagation of the uncertainties on the decay scheme parameters.
- Detector efficiency: already used to account for peak summing effects (e.g. ⁶⁰Co).
- Similar module in development at LNHB for Geant4, with metastable states and beta spectra from BetaShape.

list ^{Ceatech}

LaraWeb http://www.lnhb.fr/nuclear-data/module-lara/

⁶⁰ Co - Emissions and decay scheme						
Element: Cobalt (Z=	27)					
Daughter(s): Ni-60 (3 ⁻ , 100 %)					
<i>Q</i> ⁻ : 2823.07 keV						
Possible parent(s): C	<u>.o-60m</u> (I.T., 99.75 %)				
Half-life (T½): 5.2711	(8) a ≡ 166.340 (25)	10 ⁶ s				
Decay constant (λ):	4.1671 (6) 10 ⁻⁹ s ⁻¹					
Specific activity (Am)	: 41.824 (6) 10 ¹² Bq	.g ⁻¹				
Reference: INEEL - 2	006					
Associated data files	s: <u>Table</u> - <u>Comments</u>	- ENSD	E - <u>PenN</u>	uc		
Results file (ASCII te	xt format): <u>Co-60.txt</u>					
Mass \rightleftharpoons Activity conversion: 1.255E+8 Bq \rightleftharpoons 3E-6 g						
Decay calculation:				-1)	
$A(t_0) = 1000$ Bq $t_1 = 1.697E + 0$ a \checkmark $A(t_1) = 800$ Bq						
Coincidence thresho	old: 10 %					
Emissions (10 lines) sorted by increasing energy						
Epergy (ke)/)	Intensity (%)	Type	Origin*	Lev	els	Possible coincidence with (keV) /
Lifergy (KeV)	intensity (%)	Type	Ungin	Start*	End*	Possible sum of (levels)
0.84 (-)	0.0002 (-)	XL	Ni-60			

Ni-60

Ni-60

Ni-60

Ni-60

Ni-60

Ni-60

Ni-60

Ni-60

3

2

3

1

2

3

2

1

1

0

 $0 (3 \rightarrow 1) + (1 \rightarrow 0)$

0

1 332.492 (Σ=2 505.720)

1 173.228 (Σ=2 505.720)

Χ_{Κα1}

Y

y

Y

y

γ

X_{K'B1} Ni-60

Nucléide - Lara Library for gamma and alpha emissions					
Nuclide list:					
59Fe 59Ni Nuclide search:					
60Co or 60Co-M or 61Cu (e.g.: 99Xx or Xx-99) 63Ni 63Zn 64Cu •					
Energy threshold (keV):					
Intensity threshold (%):					
Coincidence threshold (%): 10					
Show γ-γ coincidences 🛛 🕅					
Sort by decreasing intensity 🔲					
Show simple decay tools 🛛 🗵					
Display: 🗹 Data 🗹 Emissions 🖤 Scheme					
Emission type: 🗹 X 🔍 gamma 🔍 alpha					
Language: EN EO FR					
Show data					

7.46097 (-)

7.47824 (-)

8.2967 (-)

347.14 (7)

826.10 (3)

1 173.228 (3)

1 332.492 (4)

2 158.57 (3)

2 505.692 (5)

0.00334 (12) X_{Kα2}

0.0065 (3)

0.0075 (4)

0.0076 (8)

99.85 (3)

99.9826 (6)

0.0012 (2)

0.0000020 (4) y

0.00136 (5)

LaraWeb http://www.Inhb.fr/nuclear-data/module-lara/

list

ceatech

NSDD 2019, 8 - 12 April 2019 | Xavier Mougeot | 11

The BetaShape code

- First release in 2016. Beta transitions are calculated from ENSDF file as input. Modelling improved compared with LogFT. Database of experimental shape factors. Provides beta spectra (single, total), mean energies, log *ft* values. Officially adopted by DDEP.
- New version will be released in June 2019. Small bugs fixed, change in uncertainty treatment. Improved radiative corrections from Towner and Hardy (unitarity of CKM matrix).
- Inclusion of electron captures with an improved modelling compared with LogFT. Provides capture and capture-to-positron probability ratios for each subshell, splitting of the branch between capture and beta plus, log *ft* values.
- Possible on-the-fly update of the Q-values with AME2016 (already implemented). ENSDF format for continuous data will be included.
- > Nuclear Data Week at NNDC (5-9 November, 2018).
- Fechnical Meeting on the Improvement of Analysis Codes for Nuclear Structure and Decay Data Evaluations (3-7 December, 2018).

The MetroBeta Project

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

http://metrobeta-empir.eu/

Short Name	Organisation legal full name	Country
CEA	Commissariat à l'énergie atomique et aux énergies alternatives	France
CMI	Cesky Metrologicky Institut Brno	Czech Republic
PTB	Physikalisch-Technische Bundesanstalt	Germany
Gonitec	Gonitec BV	Netherlands
UHEI	Ruprecht-Karls-Universitaet Heidelberg	Germany
UMCS	Uniwersytet Marii Curie-Sklodowskiej	Poland
CHUV	University Hospital of Lausanne	Switzerland

The MetroBeta Project

WP No	Work Package Title	Active Partners
WP1	Theoretical calculations of beta spectra	CEA; UMCS
WP2	High-resolution beta spectrometry based on Metallic Magnetic Calorimeters (MMCs)	PTB; CEA; UHEI
WP3	Measurements of beta spectra with other methods	CHUV; CMI; Gonitec
WP4	Comparison and validation of measurements	PTB; CEA; CHUV
WP5	Creating impact	CMI; all partners
WP6	Management and coordination	CEA; all partners

Improve the calculations of beta spectra and inclusion of nuclear structure. Measure new high resolution beta spectra for low (< 100 keV) and intermediate (< 1 MeV) end-point energy pure beta emitters ¹⁵¹Sm, ¹⁴C, ⁹⁹Tc and ³⁶Cl.

The MetroMMC Project

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Measurement of fundamental nuclear decay data using Metallic Magnetic Calorimeters

http://empir.npl.co.uk/metrommc/

Short Name	Organisation legal full name	Country
CEA	Commissariat à l'énergie atomique et aux énergies alternatives	France
NPL	National Physical Laboratory	United Kingdom
PTB	Physikalisch-Technische Bundesanstalt	Germany
KRISS	Korean Research Institute of Standards and Science	South Korea
UHEI	Ruprecht-Karls-Universitaet Heidelberg	Germany
UNL	Universidade Nova de Lisboa	Portugal
CNRS	Centre National de la Recherche Scientifique	France

The MetroMMC Project

WP No	Work Package Title	Active Partners
WP1	Improvement of experimental techniques for spectrometry based on novel cryogenic detectors for radionuclide metrology in the energy range of 20 eV - 100 keV	PTB, CEA, NPL, UHEI, KRISS
WP2	Determination of fractional electron capture probabilities of selected radionuclides by means of spectrometry based on novel cryogenic detectors with high energy resolution and very low energy threshold using sources embedded in the detector absorber	CEA, PTB, KRISS
WP3	Measurement of absolute X-ray emission intensities of selected radionuclides (⁵⁴ Mn, ⁶⁵ Zn, ⁵⁹ Ni, ¹⁰⁹ Cd, ¹²⁵ I) by using a combination of high-resolution spectrometry based on novel cryogenic detectors using external sources and accurate primary activity determination	NPL, PTB, CEA
WP4	Improvement of theoretical models of the electron capture process and subsequent atomic relaxation	CEA, NPL, PTB, CNRS, UHEI, UNL
WP5	Creating impact	NPL; all partners
WP6	Management and coordination	PTB; all partners

Improve the calculations of electron captures and atomic relaxation.

Measure new high-precision capture probabilities and X-ray emission intensities for a set of radionuclides (⁴¹Ca, ⁵⁴Mn, ⁵⁹Ni, ⁶⁵Zn, ¹⁰⁹Cd, ¹²⁵I).

Conclusions

The CCRI of the BIPM endorse the use of DDEP recommended data.

The DDEP has expertise in evaluating atomic and nuclear decay data.

Publication of reference data in collaboration with the BIPM and provision of a database in order to disseminate these reference data.

Provision of information concerning the details of each evaluation, including recommendations for new measurements.

Three new evaluators from National Metrology Institutes have recently joined.

Other additional data related projects, e.g. MetroBeta and MetroMMC, are on-going.

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019