23rd NSDD 2019
Code GABS:
%Iy calculation when
Iy normalization (NR) is
known

N. Nica
Texas A&M University

GABS v11.0 Program Manual

• GABS calculates <u>absolute gamma-ray intensities</u> and a <u>decay-scheme normalization factor (NR)</u> for converting relative intensities to absolute values per 100 decays of the parent nucleus (NR also know as the Iy normalization factor)

GABS Input, Report

• GABS input:

147CE N

```
147CE L 117.711 6(7/2-)
147CE G 117.718 6 100 M1+E2 1.1
                                          0.966
                                                     AY
   GABS report:
* * * GABS Version 11c [08-Jan-2017] Report file * * *
   Current date: 03/25/2019
   ENSDF input file: Ce b bgl gabs.inp
   new ENSDF file: Ce b bgl gabs new
   Data Set: 147LA B- DECAY
   NR= 0.18 3 BR= 1.00
   E= 156.7 1 %IG=0.09 9 per 100 dis.
   E= 225.0 1 %IG=0.61 10 per 100 dis.
   E= 272.47 3 %IG=0.090 23 per 100 dis.
   E= 601.8 1 %IG=0.9 4 per 100 dis.
   E= 674.66 5 %IG=0.68 11 per 100 dis.
   E= 713.1 1 %IG=0.13 4 per 100 dis.
   E= 117.718 6 %IG=18 3 per 100 dis. Compare with 18 3
```

0.73 11

GABS Output

• GABS output:

```
147CE N 0.18 3 1.00
147CE G 117.718 6 100 M1+E2 1.1 0.966 A
147CE2 G %IG=18 3
147CEC G %IG=17.6 17
```

GABS keeps adding the "147CE2 G %|G= "records for repeated runs instead of deleting the old ones as BrIcc for example does

• NR can be determined by a procedure different from that of GABS:

Iy normalization: absolute photon intensities were calculated from the absolute intensity %*I*(117.7 in 147 Ce)=18.3 25, based on %*I*(315 in 147 Pr – decay)=18.2 18 (from known measured ratio)

GABS should calculate only the <u>absolute gamma-ray intensities</u> accepting the known NR value as input

GTOL

NR=0.1830E+00+-0.25E-01

NT=0.1830E+00+-0.25E-01

BR=0.1000E+01+-0.00E+00

NB=0.1000E+01+-0.00E+00

	RI	RI	RI	TI	TI	TI	NET FEE	DING		
LEVEL	(OUT)	(IN)	(NET)	(OUT)	(IN)	(NET)	(CALC)	(INPUT)		
0.0	0.000	287 8	-287 8	0.000	401 8	-401 8	27 11	27	11	
117.711 6	100.0	117 3	-17 3	196.6 14	136 4	61 4	11.2 17	11.2	17	

...

NET FEEDING TO G.S. IS 26.67+-10.11

GABS

• GABS should calculate only the <u>absolute gamma-ray intensities</u> accepting the known NR value as input which should give

```
147CE N 0.183 25 1.00
147CE G 117.718 6 100 M1+E2 1.1 0.966 A
147CE2 G %IG=18.3 25
```

• However because GABS always determine both NR and %Iy's, it would recalculate NR and give:

```
147CE N 0.18 3 1.00
147CE G 117.718 6 100 M1+E2 1.1 0.966 A
147CE2 G %IG=18 3
```

- It results for %Iy:
 - 147 La β- decay to 147 Ce, 117.7γ: 18.3 25 → 18 3 (GABS)
 - ${}^{147}Ba$ β- decay to ${}^{147}La$ 167.4γ: 15.9 16 → 16 4 (GABS)
- Presumed causes:
 - GABS recalculates NR by comparing $\Sigma_{g.s.}(I\gamma_i)$ and $\Sigma_{g.s.}(\%I\gamma_i)$
 - Possible truncation numerical error on $\Sigma_{g.s.}(\%I\gamma_i)$ in GTOL input

GABS

Proposal:

Allow GABS to run in two scenarios:

- 1) To calculate NR and %Iy's (actual).
- 2) Allow NR value alone as input and calculate only %Iγ's.
- Delete the pre-existing %Iy values and replace them with the newly calculated ones as BrIcc does.
- Otherwise one should accept actual situation of slightly different NR and %Iy;
- However we do not know how big the differences are in all situations