Precise a_K and a_T Internal Conversion Coefficients Measurements of 39.752(6)-keV E3 Transition in ^{103m}Rh: Test of Internal Conversion Theory <u>TEXAS A&M PROGRAM TO MEASURE ICC</u>

<u>N. Nica¹</u>, J.C. Hardy¹, V. Horvat¹, V.E. Iacob¹, H.I. Park¹, T.A. Werke¹, K.J. Glennon¹, C.M. Folden III¹, M.B. Trzhaskovskaya² ¹ Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA ² Petersburg Nuclear Physics Institute, Gatchina 188300, Russia

Internal Conversion Coefficients (ICC):

- Big impact on quality of nuclear science
- Central for the nuclear data evaluation programs
- Intensely studied by theory and experiment
- Important result: hole calculation now standard

2002RA45 survey ICC's theories and measurements

• Theory: RHFS and RDF comparison

Exchange interaction, Finite size of nucleus, Hole treatment

• Experiment:

100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision!

Conclusions, Δ(exp:theory)%:

No hole:+0.19(26)% BEST!(bound and continuum states - SCF of neutral atom)Hole-SCF:-0.94(24)%(continuum - SCF of ion + hole (full relaxation of ion orbitals))Hole-FO:-1.18(24)%(continuum - ion field from bound wave functions of neutral atom
(no relaxation of ion orbitals))PHYSICALARGUMENTK-shell filling time vs. time to leave atom
 $~10^{-15} - 10^{-17}$ s $~ 10^{-18}$ s

2002Ra45: 100 $\alpha_{K}(exp)$ cases compared with 'hole FO' calculations

Overview of the scope and completeness of the method

• **Scope:** *Minimize* **ICC measurement unc** (~1%) **and** *maximize*

*∆*_{theory}(FO,NH)% (>4%, E3, M4)

• Completeness: There is no criterion to reach the scope of comparison between ICC theories "with hole" and "no hole" except for measuring precisely as many relevant cases as practically possible

III. ^{103m}Rh 39.748 keV, E3 transition

- α(K)exp: 153 6 [1], 127 6 [2]
- $\alpha(K)_{hole_FO} = 135.3(1), \alpha(K)_{no_hole} = 127.5(1), \Delta_{Theory}(FO, NH) = 5.9\%$
- α(T)exp: 1531 *30* [2], 1430 89 [3]
- $\alpha(T)_{hole_FO} = 1388(2), \alpha(T)_{no_hole} = 1404(1), \Delta_{Theory}(FO,NH) = 1.1\%$

[1] M. Sainath *et al*, Ind. J. Pure and Appl. Physics 37, 87 (1999); [2] K.H. Czock *et al*, Int. J. Appl. Radiat. Isotop. 26,417 (1975); [3] R. Vaninbroukx *et al*, Progress Report 1978, Central Bureau for Nuclear Measurements, Geel, Belgium, NEANDC(E)-202U, Vol. III, p. 28 (1979).

Texas A&M precision ICC measurements:

• KX to γ rays ratio method

$$\beta^{-}: \alpha_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}} \cdot \frac{1}{\omega_{K}}$$

$$\epsilon: \alpha_{K} + (1 + \alpha_{T}) P_{ec,K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}} \cdot \frac{1}{\omega_{K}}$$

$$\Sigma_{i} (1 + \alpha_{Ti}) \cdot \frac{N_{\gamma i}}{\varepsilon_{\gamma i}} = (1 + \alpha_{T39.8}) \cdot \frac{N_{\gamma 39.8}}{\varepsilon_{\gamma 39.8}}$$

- N_K , N_γ measured from only one K-shell converted transition
- ω_K from 1999SCZX (compilation and fit)
- Very precise detection efficiency for ORTEC γ-X 280-cm³ coaxial HPGe at standard distance of 151 mm:
 - 0.2%, 50-1400 keV
 - 0.4% , 1.4-3.5 MeV
 - ~1%, 10-50 keV (KX rays domain)

DETECTOR EFFICIENCY 50 keV < E_{γ} < 1.4 MeV

Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- •Calculated efficiencies with Monte Carlo (Integrated Tiger Series - CYLTRAN code)

0.2% uncertainty for the interval 50-1400 keV

¹⁰⁹Cd Efficiency Calibration

22.6-keVAgKx & 88.0-keVE3 y regions

KX to γ rays ratio method

- \circ Sources for n_{th} activation
 - Small selfabsorption (< 0.1%)</p>
 - Dead time (< 5%)</p>
 - Statistics (> 10⁶ for γ or x-rays)
 - High spectrum purity
 - Minimize activation time (0.5 h)
- **o Impurity analysis essentially based on ENSDF**
 - Trace and correct impurity to 0.01% level
 - Use decay-curve analysis
 - Especially important for the K X-ray region
- **Voigt-shape (Lorentzian) correction for X-rays**
 - Done by simulation spectra, analyzed as the real spectra
- Coincidence summing correction
- **o Random summing (pile-up) monitoring / correction**

^{103m}Rh Run

- Radioactive Sources were prepared by (n_{th}, γ) reaction at TRIGA reactor of Texas A&M Nuclear Science Center at ~ 7.5 ×10¹² n/cm²s
- Sources were prepared of materials with natural isotopic abundance: ¹⁰²Ru 32%, ¹⁰²Pd 1%

1. $\frac{103mRu \text{ Source}(1)}{545 \mu g/cm^2 RuO_2}$ on Al backing. Activated for 20 h, measured after 1 months for ~20 days with HPGe detector. Found ¹⁵³Gd decay (239 d) 41.3-keV K_a peak affecting the 39.8-keV ^{103m}Rh peak of interest

2. <u>103mRu Source(2)</u>, 1.1 mg/cm² Ru metal on 1.3 mg/cm² Cu metal. Activated for 32 h, measured after 1 months for ~77 days with HPGe detector and Si(Li) detector.

3. $\frac{103mPd \text{ Source}(3)}{103mPd \text{ Source}(3)}$, 4.8 mg/cm² Pd metal. Activated for 4.5 h, measured after 2 months for ~44 days with HPGe detector.

^{103m}Rh Analysis

HPGe detector

Ru/Cu Source(2): (a) Rh Kx-rays; (b) 39.8-keV γ ray **RuO₂ Source(3):** (c) 39.8-keV γ ray + Eu K_a contamination

Ru/Cu Source(2): *Impurity analysis spectrum*

Pd Source(3): Impurity analysis spectrum

^{103m}Rh Results

Weighted average of seven experimental results:

• From Ru run Source(1) and Source(2)

 $\alpha_{K39.8} = 141.1(23) \ (rel. unc. 1.6\%)$ $\alpha_{T39.8} = 1428(13), \ (rel. unc. 0.9\%)$

• Pd Source(3)

Consistency check: ${}^{103}Pd \varepsilon$? ${}^{103}Ru \beta$ $\alpha_K + (1 + \alpha_T)P_{ec,K}: 1383(28) \approx 1369(11)$

Model	α _K	Δ(%)	α	Δ(%)
Experiment	141.1(23)		1428(13)	
Theory:				
a) Pure E3				
No vacancy	127.5(1)	+10.7(18)	1388(2)	+2.9(9)
Vacancy(FO)	135.3(1)	+4.3(17)	1404(1)	+1.7(9)
a) E3+M4, δ=0.02				
(0.04%)				
No vacancy	131.2(1)	+7.5(18)	1410(2)	+1.3(9)
Vacancy(FO)	139.3(1)	+1.3(17)	1426(1)	+ 0.1(9)

(a) a_K and (b) a_T from Ru Source(1) and Source(2)

<u>Conclusion</u>: Small M4 admixture:

-Agreement with theory including the vacancy (FO)

-Disagreement with theory ignoring the vacancy