

Determining normalization factor for decay involving transient equilibrium

Caroline Nesaraja Oak Ridge National Laboratory NSDD 2019

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

¹³⁷La: ¹³⁷Ce ε decay

Determine decay scheme normalization involving transient equilibrium intensities

Normalization can be calculated if the relative intensities are known with respect to a transition in a daughter or further down in the decay chain provided that the sample is in transient equilibrium and the absolute intensity is known for some transition in the decay chain

Transient equilibrium from Bateman Equation

Activity Equilibrium correction factor

Open slide master to edit

¹³⁷La: ¹³⁷Ce ε decay ¹³⁷Ce^m (Parent $T_{1/2}$ = 34.4 (3) hr) 254γ $\epsilon + \beta^+$ decay ¹³⁷Ce g.s (Daughter T_{1/2}= 9.0 (3) hr) 447γ ¹³⁷La

Activity Equilibrium correction factor = $\frac{T_p}{T_p - T_d} = \frac{34.4}{34.4 - 9.0} = 1.354$ (17)

It's a bit of a sticky wicket to determine the NR

Experiment: 1975He20

- Henry et.al (1975)
- Measured γ and conversion electron
- Hslcc
- At equilibrium, the total ε+β+ decay from the ¹³⁷Ce g.s (9 hr) is the total intensity of the isomeric 254γ.
- In transient equilibrium spectra

I(254γ)/I(477γ)= 4.91 (15)

• NR= 0.0224 (10)

Evaluation: ENSDF

- Current ENSDF database
- Determined normalization factor NR using activity Equilibrium correction factor
- Brlcc
- NR= 0.0168 (8)

Experiment: 2012To09

- Torrel & Krane (2012)
- Measured γ
- Authors used normalization factor from ENSDF
- NR= 0.0168 (8)

In transient equilibrium:

$$I(254\gamma)/I(447\gamma) = 4.91 (15)$$
 (1)

At equilibrium, the total ε + β + decay from the ¹³⁷Ce g.s (9 hr) is the total intensity of the isomeric 254 γ .

Hence $TI(254\gamma)$ can be set to 100 decays of the gs

 $TI(254\gamma)=I(254\gamma)(1+\alpha)=100$ (2)

Combine equation (1) and (2)

 $I(447\gamma) = [100/(1+\alpha)] / 4.91 (15)$

i) with a (254g) (Hslcc)=8.08 (25)

 $I(447\gamma)= 2.24$ (9) per 100 ¹³⁷Ce g.s (9 hr)

NR=2.24 (9)/1000 =0.00224 (9)

ii) with Activity Equilibrium correction factor =1.354 (17)

 $I(447\gamma)=2.24/1.354$ (17)=1.68 (8) per 100 ¹³⁷Ce g.s (9 hr)

1975He20

TABLE I. γ rays which follow ¹³⁷Ce^s decay.

E_{γ}	I_{γ} (rel.) ^a	Assignment from-to
10.56 (4) ^{b,c}		10-0
148.83 (8)	0.5 (2)	641-493
217.03 (5)	2.2 (3)	926-709
433.22 (9)	29.1 (15)	926-493
436.59 (9)	149 (5)	447-10
447.15 (8)	1000 ^d	447-0
479.12(10)	6.7 (3)	926-447
482.47(10)	25.7 (9)	493-10
493.03(10)	5.9 (3)	493-0
529.3 (2)?	0.2 (1)	(1171-641)
631.38 (6)	7.5 (4)	641-10
678.26(12)	0.5 (2)	1171-493
698.72(11)	17.5 (9)	709-10
709.72(11)	0.6 (1)	709-0
724.4 (3)	0.4 (2)	1171-447
770.97(10)	3.4 (2)	781-10
781.57(13)	1.7 (2)	781-0
915.80(13)	28.9 (10)	926-10
926.35(13)	19.0 (7)	926-0
1160.85(22)	0.84 (8)	1171-0

^a To obtain absolute photon intensities, multiply by 0.00224(10).

10.56 keV obtained from energy differences of cascade and crossover transitions, $E_{\gamma} = 10.61$ keV using a LEPS; see text.

^c Uncertainties in the last significant figures are shown in parentheses.

^d In transient equilibrium spectra $I(254\gamma)/I(447\gamma)$ = 4.91(15).

$\gamma(^{137}La)$

Iy normalization: from I(254 γ)/I(447 γ)=4.91 *15* in a transient equilibrium γ -spectrum of 9.0 h and 34.4 h ¹³⁷Ce. The correction factor for the γ -ray intensities from ¹³⁷Ce(9.0 h) is 34.4 *3*/[34.4 *3* – 9.0 *3*] = 1.354 *16*, where 34.4 h *3* is the half-life of ^{137m}Ce, and 9.0 h *3* the half-life of ¹³⁷Ce ground state. Thus the normalization factor becomes I γ (447)/[I γ (254)x(1+ α)]x 1/1.354 *16* = (1/4.91 *15*)x(1/(1+7.93 *12*))x(1/1.354 *16*) = 0.0168 *6*, where α =7.93 *12* is the M4 conversion coefficient of 254 γ . However, since in our scale of relative intensities we use I γ (447)=1000, then I γ normalization=0.00168 *6*.

$I(447\gamma)=100$ $\alpha=7.93$ (12)(Brlcc) CF=1.354 (16) ENSDF Database: NR= 0.0168 (6)

¹³⁷Ce ε decay:9.11 h:XUNDL-3 2012To09 (continued)

$\gamma(^{137}La)$

Iy normalization: See detailed comment in 137CE EC DECAY (9.0 H) dataset in ENSDF database.

 $I(447\gamma)=100$ $\alpha=7.93$ (12)(Brlcc) CF=1.354 (16)

XUNDL: NR= 0.0168 (6)

¹³⁷Ce ε decay (9.11 h) 2012To09,1975He20 (continued)

 $\gamma(^{137}La)$

I γ normalization: At transient equilibrium, the total ^{137g}Ce $\varepsilon + \beta$ decay equals to the total intensity of the 254 γ with I(254 γ)/I(447 γ)=4.91 *15* in a transient equilibrium γ -spectrum of 9.11 h and 34.80 h ¹³⁷Ce given by 1975He20. The evaluator assumes that the correction factor for the γ -ray intensities from ¹³⁷Ce(9.11 h) which is 34.80 *3*/[34.80 *3* - 9.11 *3*]= 1.354 *16*, where 34.80 h *3* is the half-life of ^{137m}Ce, and 9.11 h *3* the half-life of ¹³⁷Ce ground state has been already taken into account by the authors in 1975He20. Thus the normalization factor is I γ (447)/[I γ (254)x(1+ α)]=(1/4.91 *15*)x(1/(1+7.93 *12*)))=0.0228 *8*, where α =7.93 *12* (BrICC) is the M4 conversion coefficient of 254.283 γ (E γ from 2012To09).

$I(447\gamma)=100$ $\alpha=7.93$ (12)(Brlcc)

Current Evaluation: NR= 0.0228 (8)

