

BetaShape

NSDD Technical Meeting 2018 | Xavier Mougeot

If no experimental data \rightarrow Theoretical estimates

The LogFT program is widely used in nuclear data evaluations

- Handles β and ε transitions
- Provides mean energies of β spectra, log *ft* values, β^+ and ε probabilities
- Propagates uncertainties from input parameters
- Reads and writes ENSDF files (*Evaluated Nuclear Structure Data File*)

However

- Too simple analytical models \rightarrow lack of accuracy
- Forbiddenness limitation (allowed, first- and second- forbidden unique)
- Users now require β spectra and correlated v spectra
- Users now requires detailed information for many subshells in ε

61

BetaShape v1.0

Executables of the BetaShape program for Windows, Linux and OS X are available at http://www.lnhb.fr/activites-recherche-developpement/logiciels-traitement-spectres/

NSDD Technical Meeting 2018 | X. Mougeot | 3

Nuclear current can be factored out for allowed and forbidden unique transitions

$$C(W) = (2L-1)! \sum_{k=1}^{L} \lambda_k \frac{p^{2(k-1)} q^{2(L-k)}}{(2k-1)! [2(L-k)+1]!}$$

 \rightarrow Solving the Dirac equation for the leptons is sufficient with these assumptions

X. Mougeot, Phys. Rev. C 91, 055504 (2015)

Forbidden non-unique transitions calculated according to the ξ approximation

if
$$2\xi = \alpha Z/R \gg E_{max}$$

1st fnu \rightarrow allowed
applied to 2nd, 3rd, etc.

$\textbf{Assumptions} \rightarrow \textbf{Corrections}$

- Analytical screening corrections
- Radiative corrections

Propagation of uncertainty on E_{max} Reads and writes to/from ENSDF files

Database of experimental shape factors

list ^{Ceatech}

Analytical screening corrections

- Single and total β^+/β^- and $\nu_e/\overline{\nu}_e$ spectra
- Mean energy $\overline{E} = \int_0^{E_0} E \cdot N(E) dE / \int_0^{E_0} N(E) dE$

• Log *ft* value
$$\bowtie f_{\beta^-} = \int_1^{W_0} N(W) dW$$

 $\Join f_{\varepsilon/\beta^+} = f_{\varepsilon} + f_{\beta^+}$ + partial half-life from data: $t_i = T_{1/2}/P_{\beta}$

For allowed and forbidden unique transitions

$$\frac{I_{\varepsilon}}{I_{\beta^+}} = \frac{\lambda_{\varepsilon}}{\lambda_{\beta^+}} = \frac{C_{\rm ns} \sum_{x} n_x C_x f_x}{C_{\rm ns} \int_1^{W_0} N(W) dW} \approx \frac{f_{\varepsilon}}{f_{\beta^+}}$$

 C_x : lepton dynamics

 $C_{\rm ns}$: nuclear structure (allowed, forbidden unique) n_{χ} : relative occupation number of the orbital, not accounted for in the LogFT program

$$\rightarrow \underline{\log ft} = \log\left(\frac{f_{\varepsilon} + f_{\beta^+}}{I_{\varepsilon} + I_{\beta^+}} T_{1/2}\right)$$

$$= \log\left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2}\right) + \log\left(\frac{1 + f_{\varepsilon}/f_{\beta^+}}{1 + I_{\varepsilon}/I_{\beta^+}}\right)$$

$$\approx \log\left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2}\right)$$

Examples of improved calculations

These two transitions are calculated as allowed by the LogFT program.

list

B

NSDD Technical Meeting 2018 | X. Mougeot | 9

BetaShape v1.1

Executables soon available on LNHB website

NSDD Technical Meeting 2018 | X. Mougeot | 10

- Input file should not given anymore via 'inpf='

 → Drag and drop of ENSDF file on BetaShape executable now possible, with default options.
- Few number of display bugs in READ files.
- Uncertainties: if no uncertainty v1.0 estimates a ~60% uncertainty from flat distribution. Now, same as in LogFT, i.e. null uncertainty. Asymmetric uncertainties are still symmetrized (as in AME).
- Update of the database of experimental shape factors: new for ¹³⁸La and addition of ¹⁴O. Currently, 131 shape factors for single beta transitions.
- Parameters of experimental shape factors are provided as a Beta Continuation Record.
- Implementation of SPE files: continuous spectra in ENSDF format. Unplaced transitions not included yet.
- New radiative corrections, from the 1970's in v1.0.

Radiative corrections

 $(\log f)/(\log f)_{T&H,w/rd}$

NSDD Technical Meeting 2018 | X. Mougeot | 13

- Executables for Windows, Linux and OS X are available at <u>http://www.lnhb.fr/activites-recherche-developpement/logiciels-traitement-spectres/</u>
- Mass chain or even more can treated at once
- Example:
 - # readENSDF K40.ensdf

Output files

- K40.read: information read in K40.ensdf
- K40.trans: transition to be calculated
- K40.rpt: report file
- K40.new: updated ENSDF file (log*ft* values, mean energies, experimental shape factors)
- BS files: single and total beta spectra with many details, in ./K40/ directory
- K40.spe: single and total beta spectra in ENSDF format

	BetaShape_v1	.1 - File Browser	_ = ×		K40 - F	ile Browser	
File Edit View O	Go Bookmarks Tabs H	lelp		File Edit View	Go Bookmarks Tabs	Help	
🖨 Back 👻 📫	Forward 🗸 🛧 🔕	2 🗅 📃 🕅	à	<table-cell-rows> Back 🐱 🔿</table-cell-rows>	Forward 🗸 🛧 🙁	2 🖻 📃 🖗	2
Location:	home/local1/Desktop/Beta	aShape_v1.1 🦂 🔍 🕄	100% 🝳 🛛 Icon View 🔷 🗘	Location:	e/local1/Desktop/BetaSh	nape_v1.1/K40 绪 🔍	100% 🔍 🛛 Icon View
Places > X Iocal1 Desktop File System Network Trash Documents Music Pictures Videos Downloads	K40 K40 LIH2	bsan 40AR 40AR 40AR 40AR 40AR 40AR K40.ensdf Input Input K40.rpt K40.rpt K40.rpt Andre Beekh Publications.txt	bsan_mult U U U U U U U U U U U U U	Places > > Iocal1 Desktop File System Iocaln In Network Trash Documents Nusic Pictures Videos Downloads Downloads	betaK40_tot.bs	Betas betaK40_trans0.bs	Betas Analv beta+_K40_tot.bs
13 items, Free space	e: 603.7 MB		đ				

NSDD Technical Meeting 2018 | X. Mougeot | 15

Single transition file

	1							
Transition	BetaShape Analytica Author: X CEA, LIST Please ci	l version: 1.0 (2 • Mougeot (xavie: , Laboratoire Nat te: X. Mougeot, F	24/06/2016) C.mougeot@cea.fr) Sional Henri Becg Physical Review C	uerel (LNHB), Gif 91, 055504; Erra	-gur-Yvette F-911 tum Phys. Rev. C	191, France 92, 059902 (2015)		
Tansition	10							
parameters	11 Parent nu	cleus: 19-K-40 [4	4-] g.s> Da	ughter nucleus: 2	0-Ca-40 [0+] g.s.			
and ontions	12 Calculati	on of the 3rd for	rbidden unique tr	ansition from the	beta - decay of	K-40		
	13 14 Bühring's	screening correc	ction is consider	ed.				
for calculation	15	-						
1	16 End-point	energy: 1311.07	(11) keV Ene	rgy step: 4 keV	Intensity: 0.8	3921 (17)		
Experimental	17 18 An experi	mental shape fact	or has been foun	d: 1.05*a^6 + 6.3	*a^4*n^2 + 6.25*a	$r^{2*n^{4}} + 0.95*n^{6}$		
Experimental	19 Energy ra	nge of the measur	rement: 100 - 110	0 keV In dat	abase, transition	1 #21		
shape factor	20 From [196	SLE15] H. Leutz,	G. Schulz, H. We	nninger, Z. Physi	👷 187, 151 (1965)			
Mean energies, log <i>ft</i> values, analysis parameters	22 Input mea 23 Mean ener 24 Mean ener 25 26 Input log 27 Log ft va 28 Log ft va 29 30 Agreement	n energy: 583.982 gy from the calcu gy from the exper ft value: 20.58 lue from the calc lue from the experiment	2 (48) keV alated spectrum: rimental shape fa culated spectrum: erimental shape f ntal and calculat	583.639 (48) keV ctor: 583.982 (48 log ft 20.5938 (actor: log ft 20. ed spectra in [10) keV 13) with compon 5793 (13) with 0,1100] keV: 98.7	nents: log f 3.94802 component: log f 3. 77 %	(33) and log partial T1/2 16.6457 93358 (33)	(13)
3	31 Correspon	ding disagreement	: 1.23 %	•				
	32 Variation	or the mean ener	rgies: -5.888-02	5				
3	34 E (keV)	dN/dE calc.	unc.	dN/dE exp.	unc.			
3	35 0	4.02693e-04	3.54693e-08	4.33819e-04	3.72568e-08			
	36 4	4.04766e-04 4.08385e-04	3.59052e-08 3.64707e-08	4.35849e-04 4.39534e-04	3.75815e-08 3.80543e-08			
ß and v	38 12	4.13549e-04	3.71660e-08	4.44873e-04	3.86750e-08			
	39 16	4.19883e-04	3.79692e-08	4.51190e-04	3.93863e-08			
spectra	40 20	4.26884e-04	3.88382e-08	4.58040e-04	4.01500e-08			
-	41 24	4.34246e-04	3.97463e-08	4.65166e-04	4.09440e-08			
4	92 28	4.41790e-04	4.06777e-08	4.72418e-04	4.17552e-08			
	:	:		÷				

list

Ceatech

UNIVERSITE PARIS-SACLAY

Transition parameters and options for calculation

Parent nucleus: 19-K-40 [4-] g.s. --> Daughter nucleus: 20-Ca-40 [0+] g.s. Calculation of the 3rd forbidden unique transition from the beta - decay of K-40

Bühring's screening correction is considered.

End-point energy: 1311.07 (11) keV Energy step: 4 keV Intensity: 0.8921 (17)

Experimental shape factor

An experimental shape factor has been found: 1.05*q^6 + 6.3*q^4*p^2 + 6.25*q^2*p^4 + 0.95*p^6 Energy range of the measurement: 100 - 1100 keV In database, transition #21 From [1965LE15] H. Leutz, G. Schulz, H. Wenninger, Z. Physik 187, 151 (1965)

Single transition file

Mean energies, log ft values, analysis parameters

Input mean energy: 583.982 (48) keV Mean energy from the calculated spectrum: 583.639 (48) keV Mean energy from the experimental shape factor: 583.982 (48) keV Input log ft value: 20.58 Log ft value from the calculated spectrum: log ft 20.5938 (13) with components: log f 3.94802 (33) and log partial T1/2 16.6457 (13) Log ft value from the experimental shape factor: log ft 20.5793 (13) with component: log f 3.93358 (33) Agreement of the experimental and calculated spectra in [100,1100] keV: 98.77 % Corresponding disagreement: 1.23 % Variation of the mean energies: -5.88e-02 %

Single transition file

β and ν spectra

E (keV)	dN/dE <u>calc</u> .	unc.	dN/dE exp.	unc.
0	4.02693e-04	3.54693e-08	4.33819e-04	3.72568e-08
4	4.04766e-04	3.59052e-08	4.35849e-04	3.75815e-08
8	4.08385e-04	3.64707e-08	4.39534e-04	3.80543e-08
12	4.13549e-04	3.71660e-08	4.44873e-04	3.86750e-08
16	4.19883e-04	3.79692e-08	4.51190e-04	3.93863e-08
20	4.26884e-04	3.88382e-08	4.58040e-04	4.01500e-08
24	4.34246e-04	3.97463e-08	4.65166e-04	4.09440e-08
28	4.41790e-04	4.06777e-08	4.72418e-04	4.17552e-08
32	4.49411e-04	4.16228e-08	4.79707e-04	4.25756e-08
36	4.57047e-04	4.25754e-08	4.86979e-04	4.34003e-08
40	4.64658e-04	4.35318e-08	4.94200e-04	4.42261e-08
44	4.72220e-04	4.44892e-08	5.01351e-04	4.50511e-08
48	4.79720e-04	4.54460e-08	5.08419e-04	4.58738e-08
52	4.87147e-04	4.64009e-08	5.15396e-04	4.66934e-08
56	4.94498e-04	4.73529e-08	5.22280e-04	4.75092e-08
60	5.01768e-04	4.83014e-08	5.29069e-04	4.83207e-08

ł

i

ł

Additional beta continuation record

correct use

list

list Ceatech

SPE file in ENSDF format

Total beta
spectrum and
mean energy

	1	210PB		210TL B- I	DECAY (1.30	D M)			
	2	210PB	Н	TYP=FUL\$AU	JT=V.CHIST	E\$CUT=	=31-AUG-2007\$		
Total beta	3	210TL	CB	Total beta	a - spectru	um	\$BIN=358	7	Number of bins
	4	210TL	СВ	EAV=1.17E3	3 36 ┥ 🔤				
spectrum and	5	210TL	СВ	E(keV)	dNtot/dI	E b-	unc.		- Total mean energy
mean energy	6	210TL	ТΒ	0	3.359590	e-04	1.87719e-0	5	fotal moan energy
0,	7	210TL	ΤB	4	3.430130	e-04	1.91778e-0	5	
	8	210TL	ТΒ	8	3.490820	e-04	1.95320e-0	5	
	9	210TL	ТΒ	12	3.541690	e-04	1.98346e-0	5	
	10	210TL	ТΒ	16	3.583830	e-04	2.00853e-0	5	
	11	210TL	ТΒ	20	3.620456	e-04	2.03004e-0	5	
				:	:				
	362	210TL	тв	4374	3.03406	e-09	1.19774e-0	9	
	363	210TL	ΤВ	4386	0.00000	e+00	0.00000e+0	0	
	364	210TL	Ρ	0.0	(5)+		1.30 M	3	5482 12
	365	210PB	N	1.0	1.0	1	1.0		
	366	210PB	L	0	0+		22.23 Y	12	
	367	210PB	L	799.6	3 2+		17 PS	5	
	368	210PB	L	1096	3 4+		0.6 NS	1	
Beta spectrum	369	210PB	В	4386	1213		7.429	11	
and mean	370	210PB	5 B	EAV=1771 5	; 🗕 🚽				—— Mean energy
	371	210PB	СВ	From theor	cy (2015MO	10) \$E	3IN=315 \$NORM=0	.13 🗸	
energy for	372	210PB	СВ	E (keV)	dN/dE 👷	alc.	unc.		Number of bins
each transition	373	210PB	ТΒ	0	1.28258	e-05	7.33575e-08		and normalization
	374	210PB	ТΒ	14	1.350420	e-05	7.70220e-08		
	375	210PB	ΤB	28	1.411870	e-05	8.03015e-08		
	376	210PB	TΒ	42	1.466920	e-05	8.31960e-08		
	377	210PB	TΒ	56	1.519750	e-05	8.59443e-08		
	378	210PB	ΤB	70	1.571490	e-05	8.86109e-08		

Electron capture decays

NSDD Technical Meeting 2018 | X. Mougeot | 23

Allowed and forbidden unique transitions can be calculated without any nuclear structure.

If transition energy $\geq 2m_e$

 \rightarrow competition with a β^+ transition

Atomic wave functions

Relativistic electron wave functions for the atomic bound states are needed.

The method used was initially developed for the atomic exchange effect in β^{-} decay calculations.

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

Dirac equation is solved numerically

Local power series expansion

$$\begin{cases} f(r) \\ g(r) \end{cases} = \frac{(pr)^{k-1}}{(2k-1)!!} \sum_{n=0}^{\infty} \begin{cases} a_n \\ b_n \end{cases} r^n$$

- Coulomb potential = extended nucleus (uniformly charged sphere)

 + screened potential (Coulomb influence of electrons)
 + exchange potential (indistinguishability of fermions)
- Iterative procedure to reach atomic energies from a multi-configurational Dirac-Fock code.

J.P. Desclaux, At. Data Nucl. Data Tab. 12, 311 (1973)

Overlap effect

ST

ceatech

Variation of nuclear charge: the **spectator electrons** contribute to the total decay rate.

 \rightarrow Imperfect overlap between initial and final atomic wave functions

Exchange effect

Vacancy in the K shell?

+ M₁, etc.

Two approaches for overlap and exchange corrections

J.N. Bahcall, Phys.	E. Vatai, Nucl. Phys.
Rev. 129, 2683 (1963)	A 156, 541 (1970)

- **Bahcall**: only K, L₁ and M₁ shells
- Vatai: up to N₁ shell; other shells taken into account for overlap
- No multiple exchange process

$$B_{n\kappa} = \left| \frac{b_{n\kappa}}{\beta_{n\kappa}} \right|^{2} \text{ with}$$

$$B_{n\kappa} = t_{n\kappa} \left[\prod_{m \neq n} \langle (m, \kappa)' | (m, \kappa) \rangle \right] \left[\beta_{n\kappa} - \sum_{m \neq n} \beta_{m\kappa} \frac{\langle (m, \kappa)' | (n, \kappa) \rangle}{\langle (m, \kappa)' | (m, \kappa) \rangle} \right]$$

$$B_{n\kappa} = t_{n\kappa} \left[\prod_{m \neq n} \langle (m, \kappa)' | (m, \kappa) \rangle \right] \left[\beta_{n\kappa} - \sum_{m \neq n} \beta_{m\kappa} \frac{\langle (m, \kappa)' | (n, \kappa) \rangle}{\langle (m, \kappa)' | (m, \kappa) \rangle} \right]$$

$$Overlap$$

$$B_{n\kappa} = 1$$

$$Vatai$$

$$t_{n\kappa} = \{ (n, \kappa)' | (n, \kappa) \rangle^{n_{n\kappa} - 1/2|\kappa|} \left[\prod_{\substack{m, \mu \\ \mu \neq \kappa}} \langle (m, \mu)' | (m, \mu) \rangle^{n_{m\mu}} \right] \left[\prod_{\substack{m, \mu \\ \mu \neq \kappa}} \langle (m, \mu)' | (m, \mu) \rangle^{n_{m\mu}} \right]$$

No shake-up and shake-off, but **more comprehensive** approach

overestimation of others

list

Shaking effects

Each electron has only three possible final states

- Spectator: same original quantum numbers
- Shake-up: excitation to an unoccupied bound state
- Shake-off: ionization to a continuum state

Creation of a secondary vacancy

For a given captured electron, **sum of shaking probability for each atomic electron**

$$\lambda_{n\kappa} \longrightarrow \lambda_{n\kappa} \left(1 + \sum_{m,\kappa} P_{m\kappa} \right)$$

The **capture** process induces that the **daughter** atom is in an **excited state** \rightarrow Influence of the hole on the bound wave functions

First order perturbation theory $(\mathcal{H}_0 + \mathcal{H}')|(i,\kappa)'\rangle = (E_0 + E')|(i,\kappa)'\rangle$

Initial: parent atom

Perturbation: the electron (n, κ) is captured

$$\mathcal{H}' = \frac{\alpha}{r} - \langle (n,\kappa) | \frac{\alpha}{|\vec{r_{n\kappa}} - \vec{r}|} | (n,\kappa) \rangle \longrightarrow |(i,\kappa)'\rangle = |(i,\kappa)\rangle - \sum_{j \neq i} \frac{\langle (j,\kappa) | \mathcal{H}' | (i,\kappa) \rangle}{W_j - W_i} | (j,\kappa) \rangle$$

The correction of the hole effect is thus only applied through the **asymmetric overlaps**

$$\langle (j,\kappa)'|(i,\kappa)\rangle = \frac{\langle (j,\kappa)|\mathcal{H}'|(i,\kappa)\rangle}{W_j - W_i}$$

with

$$\langle (j,\kappa) | \mathcal{H}' | (i,\kappa) \rangle = \int_0^\infty (\alpha r) \big[f_{j\kappa}(r) f_{i\kappa}(r) + g_{j\kappa}(r) g_{i\kappa}(r) \big] \times$$

$$\left\{1 - \int_0^r x^2 [g_{n\kappa}^2(x) + f_{n\kappa}^2(x)] dx - r \int_r^\infty x [g_{n\kappa}^2(x) + f_{n\kappa}^2(x)] dx\right\} dr$$

Allowed transitions

Mean values of two highprecision measurements

list

Forbidden unique transitions

list

Ceatech

UNIVERSITE

CARNOT

CEA LIST

List Influence of orbital energies (preliminary study)

The relativistic local-density approximation (RLDA) approximates the electron correlations and self-consistently solves a set of single particle equations.

Eigenvalues obtained for the ground-state configuration of atoms from H to U are available on NIST website. Claimed accuracy is 0.05 meV.

		Previou	us calculat	ion	With RLDA energies			
⁵⁵ Fe	Experiment	Final	Bahcall	Vatai	Final	Bahcall	Vatai	
L/K	0.1165 (12)	0.1182 (3)	0.1185	0.1179	0.1166 (3)	0.1169	0.1163	
M/L	0.1556 (26)	0.1708 (12)	0.1714	0.1701	0.1577 (11)	0.1583	0.1570	
M/K	0.0178 (6)	0.0202 (1)	0.0203	0.0201	0.0184 (1)	0.0185	0.0183	

 \rightarrow Now results are compatible with measurements.

- → It seems also possible to see the better predictive power of Vatai's approach, as expected from a pure theoretical point of view.
- \rightarrow Same tendency is observed for other radionuclides: ⁸¹Kr, ¹³³Ba, ¹³⁸La, ²⁰²Tl, ²⁰⁴Tl.

Influence of orbital energies (preliminary study)

list

Ceatech

CARNO

CEA LIST

universite

- Precise measurements, with relative uncertainty < 5%, are scarce.
- Radiative corrections are different as β^+ transition competes.

	Hagberg et	al., Nucl. Phy	/s. A 357	, 365 (1981)	T with F	This work RLDA ene	ergies
¹³⁰ Cs	Experiment	Theory	Rad. Corr.	Total Theory	Theory	Rad. Corr.	Total Theory
K /β+	1.025 (22)	1.063 (23)	1.3%	1.077 (23)	1.025 (18)	1.24%	1.038 (18)

- \rightarrow Now results are compatible with measurements.
- \rightarrow Still difficult to distinguish between Bahcall's and Vatai's approaches.
- → Difficult also to be conclusive with other radionuclides due to the precision of the measurements. Tested: ¹¹C, ²²Na, ²⁶Al, ⁶⁵Zn, ⁸⁴Rb, ¹²²Sb, ¹²⁶I.
- \rightarrow New measurements would be very interesting.

Atomic effects in beta decays

NSDD Technical Meeting 2018 | X. Mougeot | 35

Atomic effects: ⁶³Ni

Atomic effects in allowed beta decays have been studied with high precision. Formalism of the **atomic exchange effect** has been revised to include **both** $s_{1/2}$ and $p_{1/2}$ orbitals.

In addition, **new radiative correction** and **new orbital energies** have been considered.

The relativistic local-density approximation (RLDA) approximates the electron correlations and self-consistently solves a set of single particle equations.

Eigenvalues obtained for the ground-state configuration of atoms from H to U are available on NIST website. Claimed accuracy is 0.05 meV.

L. Hayen et al., Rev. Mod. Phys. 90, 015008 (2018)

list

Clatech

Influence of orbital energies: ⁶³Ni

Atomic effects in allowed beta decays have been studied with high precision. Formalism of the **atomic exchange effect** has been revised to include **both** $s_{1/2}$ and $p_{1/2}$ orbitals.

In addition, **new radiative correction** and **new orbital energies** have been considered.

The relativistic local-density approximation (RLDA) approximates the electron correlations and self-consistently solves a set of single particle equations.

Eigenvalues obtained for the ground-state configuration of atoms from H to U are available on NIST website. Claimed accuracy is 0.05 meV.

L. Hayen et al., Rev. Mod. Phys. 90, 015008 (2018)

list

Inclusion of nuclear structure

NSDD Technical Meeting 2018 | X. Mougeot | 38

list ^{Ceatech}

Beta transition probability per beta particle energy

$$P(W_e) dW_e = \frac{G_{\beta}^2}{2\pi^3} F_0 L_0 C(W_e) p_e W_e (W_0 - W_e)^2 dW_e$$

Fermi Shape
function factor

H. Behrens, W. Bühring, Electron Radial Wave functions and Nuclear Beta Decay, Oxford Science Publications (1982)

Theoretical shape factor

$$C(W_e) = \sum_{Kk_ek_\nu} \lambda_{k_e} \left[M_K^2(k_e, k_\nu) + m_K^2(k_e, k_\nu) - \frac{2\mu_{k_e}\gamma_{k_e}}{k_eW_e} M_K(k_e, k_\nu) m_K(k_e, k_\nu) \right]$$

This formulation allows the calculation of **beta transition of every nature** (allowed, forbidden unique and forbidden non-unique).

Decay constants, partial half-lives, branching ratios and log *ft* values are integrated quantities of the beta spectrum.

 $M_K(k_e, k_{\nu})$ and $m_K(k_e, k_{\nu})$ couple the nuclear component with the lepton component.

universite

M_{κ} for beta minus transitions

NSDD Technical Meeting 2018 | X. Mougeot | 40

St

ceatech

These coefficients come from the coupling of the angular momenta of many particles

- \rightarrow 2 particles: Clebsch-Gordan coefficient (or 3j-symbol)
- \rightarrow 3 particles: 6j-symbol
- \rightarrow 4 particles: 9j-symbol

$$G_{KLs}(\kappa_{e},\kappa_{\nu}) = i^{l_{e}+l_{\nu}+L}(-1)^{j_{e}-j_{\nu}} \times \sqrt{(2s+1)(2K+1)(2j_{e}+1)(2j_{\nu}+1)} \times \sqrt{(2l_{e}+1)(2l_{\nu}+1)} \times C(l_{e}\ l_{\nu}\ L;00) \begin{cases} K \ s \ L \\ j_{e}\ \frac{1}{2}\ l_{e} \\ j_{\nu}\ \frac{1}{2}\ l_{\nu} \end{cases}$$

Racah's formulas allow the calculation of 3j-symbols, Clebsch-Gordan coefficients and 6j-symbols. 9j-symbols can be linked to a combination of 3j- or 6j-symbols.

The geometrical coefficients ensure the consistency of the formalism between the angular momenta of nucleons and leptons.

Relativistic electron wave functions

ST

ceatech

Dirac equation is solved numerically using local power series expansions following:

H. Behrens, W. Bühring, *Electron Radial Wave functions and Nuclear Beta Decay*, Oxford Science Publications (1982)

Nuclear matrix elements

Nuclear matrix elements are embedded within M_{κ} quantities.

In the case of single-particle matrix elements, an analytical integration over the transferred momentum q in the M_K quantities can be conducted.

This procedure is mathematically consistent with the usual statement for allowed transitions, namely that electron wave functions can be approximated by their value at the nucleus surface.

 \rightarrow Input from a nuclear structure model is necessary here.

St

ceatech

Two simple tests in spherical symmetry

1. Non-relativistic harmonic oscillator

$$V(r) = -V_0 + \frac{1}{2}(\hbar\omega_0)^2 r^2$$

No Coulomb potential: only nucleons, proton = neutron

Relativistic small component estimated from non-relativistic (large) component

$$f_{\kappa}(r) = \frac{\operatorname{sign}(\kappa)}{2m} \left(\frac{\mathrm{d}}{\mathrm{d}r} + \frac{\kappa + 1}{r} \right) g_{\kappa}(r)$$

2. Relativistic harmonic oscillator

Introduction of a purely imaginary vector potential: $\vec{p} \rightarrow \vec{p} + i\beta m\omega \vec{r}$ This approach induces a very strong spin-orbit coupling (ω/\hbar)

Protons \neq neutrons: introduction of a quadratic Coulomb potential \rightarrow only a shift in the harmonic oscillator frequency

Naive shell model

In the present study, a naive shell model has been used to determine the nucleon configurations.

> L. Valentin, Noyaux et particules : modèles et symétries, Paris Hermann (1989)

list

Ceatech

NSDD Technical Meeting 2018 | X. Mougeot | 45

CEA LIST

e

 $\bar{\nu}_e$

p

n

universite

In the present study, **impulse approximation** is considered:

- At the moment of the decay, the nucleon is \triangleright assumed to feel only the weak interaction.
- nucleons are assumed Other to be spectators with respect to the weak decay process.

Fermi theory is also considered:

- Vertex of the weak interaction is assumed to be pointlike.
- No W^{\pm} boson is propagated.
- The effective coupling constant G_F is used.

list

ceatech

Description of the weak decay process

In principle, the multipole expansion is unlimited. However, the lowest orders should contribute more.

Recommendation from Behrens and Bühring is to consider only the terms with $K = K_{\min}$, $K_{\min} + 1$ and $(k_e + k_v) = K$, K + 1. This recommendation is relevant for a precision at nearly the percent level but additional terms can be necessary.

A specific algorithm has thus been developed in order to control the precision of the calculation. A pre-analysis is performed at $W_0/2$ and many possibilities are tested into nested loops:

- Loop on k_e from 1 to $K_{\min} + 4$.
- Loop on all possible values of *K*.
- Loop on all possible values of k_{ν} for definite values of k_e and K.
- Loop on all possible values of *L* and *s* for definite values of *K*.

Then, each $C(W_0/2; k_e, K, k_v)$ which contributes to the total shape factor $C(W_0/2)$ more than a fixed precision limit – 10⁻⁵% in present work – is selected.

Only these relevant (k_e, K, k_v) combinations are calculated for the requested energies over the entire spectrum.

Inclusion of nuclear structure

Allowed transitions

NSDD Technical Meeting 2018 | X. Mougeot | 48

List Theoretical shape factor: ³H

Theoretical shape factor: ¹¹C

list

Theoretical shape factor: ¹³N

list

Theoretical shape factor: ²⁷**Si**

list

List Theoretical shape factor: ³¹Si

List Theoretical shape factor: ⁶³Ni

Inclusion of nuclear structure

Forbidden transitions

NSDD Technical Meeting 2018 | X. Mougeot | 55

Theoretical shape factor: ¹⁴¹Ce

list

Theoretical shape factor: ²⁰⁷TI

list

Theoretical shape factor: ²⁰⁹**Pb**

list

Theoretical shape factor: ²⁴¹Pu

list

Theoretical shape factor: ¹⁸⁷Re

list

Beta decay to and from an even-even ground state

Many particle matrix elements in the j - j coupling scheme are "simply" related to single particle matrix elements by a coefficient which depends on *K*:

 $\mathcal{M}_{KLs}^{\text{many part.}}(q^2) = C(K) \times \mathcal{M}_{KLs}^{\text{sing. part.}}(q^2)$

A sum has to be performed over different configurations, weighted by C(K). This coefficient depends on fractional parentage coefficients, which are very difficult to calculate.

An even-even nucleus can be considered as the vacuum of particle-hole excitations used to describe adjacent nuclei.

The ground state of such reference nucleus is always 0⁺. A transition to or from this state is therefore constrained to a single *K* value, the spectrum shape being only normalized by $C^{2}(K)$.

From:
$$C(K) = \sqrt{2K_{\min} + 1}$$

To: $C(K) = (-1)^{j_{i,\text{part.}}-j_{i,\text{hole}}+K_{\min}}\sqrt{2K_{\min}+1}$

St

List Allowed transition of ¹⁴C decay

 $\begin{array}{c} {}^{14}_{6}\text{C}_8 \! \rightarrow \! {}^{14}_7\text{N}_7 \\ 0^+ \! \rightarrow \! 1^+ \\ \left| \pi, 1p_{1/2}; \nu^{-1}, 1p_{1/2} \right\rangle \\ \mathcal{C}(1) = \sqrt{3} \\ \end{array} \\ \begin{array}{c} \text{E}_0 = 156,476(4) \text{ keV} \\ \text{t}_{1/2} \text{ exp.} = 5700(30) \text{ a} \\ \\ \text{t}_{1/2} \text{ NR} = 0,009 \text{ a} \\ \\ \text{t}_{1/2} \text{ R} = 0,012 \text{ a} \end{array}$

Third forbidden unique transition of ⁴⁰K decay

list

Second forbidden non-unique transition of ³⁶Cl decay

list

European projects

Theoretical shape factors

European EMPIR project MetroBeta (2016-2019): improved beta decay calculations. Inclusion of more precise nucleon wave functions from a semi-phenomenological nuclear mean-field approach, still in spherical symmetry. Will be used afterwards for electron captures.

Electron captures

European EMPIR project MetroMMC (2018-2021): improved electron capture calculations. Development of an atomic code for high precision wave functions. Will be used afterwards for atomic effects in beta decays.

Future

- Nuclear component: introduction of nuclear deformation and pairing correlations, which is expected to inherently account for configuration mixing.
- Atomic component: extension of exchange effect to forbidden beta decays.
- Uncertainties: estimate of theoretical components and propagation via a Monte Carlo method.

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019