

New/Updated ENSDF codes: Java-RULER and ConsistencyCheck

Jun Chen

2018 IAEA meeting on ENSDF codes

3-7 December

Java-RULER & ConsitencyCheck

• Java-RULER

- $\,\circ\,$ written in Java with all functions as in the old Fortran version
- Solve issues with error propagations of large and asymmetric uncertainties

ConsistencyCheck

- Check data consistency among datasets, e.g., JPI, MULT, XREF, T1/2, etc.
- $\,\circ\,$ Group levels and gammas to assist in preparing Adopted dataset
- Average EG, RI, T1/2 and generate averaging comments in ENSDF
- Other functions: setting up evaluation folders, sorting, merging/splitting datasets, etc.

Java-RULER

gamma transit	tion strengths				
F File(s) ate	 ICC from BrIcc symmetrize uncertainty compare RUL in report suppress BXLW limits 	DCC Theory	 Bricc-1.4 Hsicc-39 other 	1% % %	
H:\work\evalu	uation\ENSDF\A100\finished\Rh100)		Browse	
Calculation settings: * use input CC in dataset * DCC theory=1.4% assumed if DCC not given * relative uncertainty limit=10% for normal error propagation If any of the variables, E, T1/2, MR and RI, has relative uncertainty greater than this limit, uncertainty will be deduced from mininum and maximum value of each variable. assumptions for non-numerical uncertainties in RI: DRI assumed %DRI					
Empty 20 LT or LE 50 for DRI(+); assumed RI=DRI(-)=%(100-this value) GT or GE 1000000 for DRI(+); assumed DRI(-)=0 AP 50 CA 50					
	gamma transit F File(s) ate H:\work\evalution ion settings input CC in theory=1.4% tive uncerta f any of the reater than aximum value tions for no	gamma transition strengths F File(s) ICC from Brlcc □ symmetrize uncertainty ate □ compare RUL in report □ suppress BXLW limits H:\work\evaluation\ENSDF\A100\finished\Rh100 ion settings: input CC in dataset cheory=1.4% assumed if DCC not given tive uncertainty limit=10% for normal ef any of the variables, E, T1/2, MR and reater than this limit, uncertainty will aximum value of each variable. tions for non-numerical uncertainties i assumed %DRI ty 20 or GE 1000000 for DRI (+); assumed or GE 1000000 for DRI (+); ass	gamma transition strengths F File(s) ICC from Bricc □ symmetrize uncertainty DCC □ symmetrize uncertainty Theory ate □ compare RUL in report □ suppress BXLW limits H:\work\evaluation\ENSDF\A100\finished\Rh100 ion settings: input CC in dataset theory=1.4% assumed if DCC not given tive uncertainty limit=10% for normal error propa f any of the variables, E, T1/2, MR and RI, has receater than this limit, uncertainty will be deduce aximum value of each variable. tions for non-numerical uncertainties in RI: assumed %DRI	gamma transition strengths F File(s) ICC from Bricc symmetrize uncertainty DCC Theory ate compare RUL in report compare RUL in report other suppress BXLW limits H:\work\evaluation\ENSDF\A100\finished\Rh100 ion settings: input CC in dataset theory=1.4% assumed if DCC not given tive uncertainty limit=10% for normal error propagation f any of the variables, E, T1/2, MR and RI, has relative undereater than this limit, uncertainty will be deduced from min aximum value of each variable. tions for non-numerical uncertainties in RI: assumed %DRI ty 20 or LE 50 for DRI(+); assumed RI=DRI(-)=% (100-this tor GE 1000000 for DRI(+); assumed DRI(-)=0 50 50	

Questions on proper error propagation of large/asymmetric uncertainties (e.g., in $T_{1/2}$ and mixing ratio)

Java-RULER: some assumptions

Assumptions for non-numerical uncertainties in RI:

ΔRI	assumed %ΔRI
Empty	20
LT or LE	50 for $\Delta RI(+)$; assumed RI= $\Delta RI(-)$ =%(100-this value)
GT or GE	1000000 for ΔRI(+); assumed ΔRI(-)=0
AP, CA, SY	50

(same for MR and CC except for empty DCC where theory DCC assumed)

Proposed rule for choosing methods of error propagations

all relative uncertainties <=10% in normal error propagation any relative uncertainty >10% is use minimum and maximum (ANY of the variables: Eg, T1/2, MR, RI, ICC)

normal error propagation for f(x, y), with x and y independent:

$$\left(\frac{\Delta f}{f}\right)^2 \approx \left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta y}{y}\right)^2$$

valid only if
$$\frac{\Delta x}{x}$$
 and $\frac{\Delta y}{y}$ are small enough

Java-RULER: calculation reports

190PB	L 2614.8	8 8	(10)+		150 NS					
190PB	G 338.6	5	100	E2		0.	.0813			
190PB	G 362.9)		[E2]		ο.	.0670			
>gan	nma#2-1:	EG=338	.6 5(assum	ed) BR	(%g)=92.48 10) BR(%g	g+%ce)=100.0	Mult=E2	CC=0.0813 1	l(assumed)
	Weiseko	onf sin	dle-partic) (s. p.) (down)	and ha	alf-lives Tl/	2(e n)	in second.	
	WCISSKC	pr sin	(uncertain	ties in	171/2 are fro	m uncer	taintv in EG	2(3.p.)	in second.	
	L	B(EL)	sp	B (MI) sp	L	T1/2 (EL) sp	·	T1/2 (ML) sp	
	1	2.130	4E-02	1.79	10E+00	1	5.272E-15	23	5.67E-13	3
	2	6.488	2E-03	5.45	32E-01	2	1.960E-9	15	2.109E-7	16
	3	2.144	3E-03	1.80	23E-01	3	0.001110	12	0.1195	12
	4	7.498	6E-04	6.30	31E-02	4	932	12	1.002E+5	13
EG=3	338.6 5(a	ssumed) BR(%g)=	92.48 1	.0 BR(%g+%ce)	=100.0	Mult=E2 CC=	0.0813 1	l(assumed)	
T1/2	2(partial	1)=1.62	19E-7 17 (sec)			tw	o appr	oaches foi	ſ
BE2	2 (DOWN) = 7	.839E-	5 59	BE	2W=0.012082 9	90 (RUL=	=1000)	uncer	tainties	
								uncer	lantics	
EC=3	20 6 5/-	agumod) BD (8a) =	02 49 1	0 BD (Satson)	=100.0	Mult=F2 CC=	0 0913 1	1 (agaimed)	
T1/2)/partial	$\lambda = 1 62$) DR(%9)-	92.10 I 997)	.0 DK(sytsce)	-100.0	Mult-E2 CC-	0.0013 1	I (assumed)	
11/2	(partial)	040F	19E-/ 1/ () 5 66	5ec) 5e	20-012092 1	0.2 (1911)	=1000)			
DE2	(DOWN) - /	.040E-	5 66	DE	.2w-0.012003	.02 (KUI	1000)			
**** ne	w line:	190PBB	G BE2W=0	01208						
**** 0]	d line:	190PBB	G BE2W=0.	012						
>gan	nma#2-2:	EG=362	.9 5(assum	ed) Mu	lt=[E2] CC=0.	0670 9	(assumed)			
2		intens	ity (IG) i	s not g	iven. IG=0 is	assume	ed.			

ConsistencyCheck code for ENSDF evaluation (or CheckENSDF)

• Main functions for checking:

- **Check data consistency** among datasets (Adopted and individuals), e.g., JPI, MULT, XREF, T1/2, etc.
- Check data validity (physics), e.g., large B(XL) compared to RUL, gammas with large ΔJPI, decay branches with large ΔJPI, etc.

• Functions for speeding up preparation of Adopted datasets:

- **Group ENSDF lines of levels and gammas** (including comment lines) from individual datasets in one place for a quick view of all available data from different reactions
- Average EG, RI and T1/2 with uncertainties in the same group and generate averaging comments in ENSDF that can be directly copied and pasted into the Adopted dataset (copy-and-paste is not automated since human evaluation is needed here)

• Other useful functions:

- Setting up and creating evaluation folders when starting a new mass-chain evaluation
- \circ $\,$ Sorting and merging individual datasets $\,$
- $\circ~$ Splitting a large file of multiple datasets into files of single dataset
- \circ and more

ConsistencyCheck code: user interface

check data consistency among ENSDF datasets, group levels and gammas, and average values from different datasets

National Science Foundation Michigan State University

ConsistencyCheck code: usage & output files

The usage is simple:

load an ENSDF file containing all datasets to be checked

or

load multiple single-dataset files at one time (drag and release files into the message window to load files)

Output files: (e.g., for A=73)

73 .err:	error reports
73 .wrn:	warning reports
73. lev:	tabulated level information
73 .gam:	gammas grouped by gamma energy
73. gle:	gammas grouped by level energy
73. mrg :	grouped lines of all datasets
73. avg:	average results of records

ConsistencyCheck example: grouped entries

LEVEL**********************************	*****	**100RU L 1741.011 8 0+ 1.39 PS GT	
	NEW	100RUX L XREF=ABDGHIJKMPR	
	OLD	100RUX L XREF=ABDGHIJKMPR	
100TC B- DECAY (15.46 S)>A	А	100RU L 1740.95 10 0+ A	
100RH EC DECAY (20.8 H)>B	в	100RU L 1740.993 11 0+	
100MO 2B- DECAY (6.9E+18 Y)>D	D	100RU L 1741.0 0+ X ?	
98MO(A, 2NG)>G	G	100RU L 1740.9911 0+	
99TC(3HE,D)>H	Н	100RU L 1741 20 (4) 0.086 D	
99RU(N,G) E=RES>I	J	100RU L 1741.9 7 0+	
99RU(N,G) E=TH>J	I	100RU L 1741.052 20 0+	
99RU(D,P)>K	K	100RU L 1742 2 Y	
100RU(N,N'G),(N,N')>M	М	100RU L 1741.074250+ 1.39 PS GT	
101RU(P,D)>P	P	100RU L 1741 0.0002 LT ?	
102RU(P,T)>R	R	100RU L 1742.0 2 0+ 2.97 b	
100TC B- DECAY (15.46 S)>A	A	100RU B 0.066 3 6.35 2	
100TC B- DECAY (15.46 S)>A	A	100RU cB IB\$0.062 {I6} from TAGS data (2017Gu17).	
100RH EC DECAY (20.8 H)>B	В	100RU E 0.0090 17 0.058 10 8 9 1 0.067 12	
100MO 2B- DECAY (6.9E+18 Y)>D	D		
100MO 2B- DECAY (6.9E+18 Y)>D	D	100RUZEL	
100MO 2B- DECAY (6.9E+18 Y)>D	D	Looped - Same gamma from different dense level for	
100MO 2B- DECAY (6.9E+18 Y)>D	D		
100MO 2B- DECAY (6.9E+18 Y)>D	D	OORO CL 3 OOTOSCO V(1995Ba29).	Charles also
102RU(P,1)>R	ĸ	100RU CL (15) at 15).	tinal levels
102R0(P,1)>R	ĸ	100R022515(61)/15(151)22.	
LOOTC P. DECAY (15 46 C)	7	100R0 6 576.50 5 75.7 15 22 0.01250 E6-576.50	
100PH EC DECAY (20.8 H)>R	R	100R0 G 576.7 1 65 6 62 0.01252 C **** EG=576.7	
100MO 2B- DECAY (6 9E+18 Y)>D	D	100R0 G 578.79 5 05 12 22 0.01251 C **** EG=578.79	
98MO(A 2NG)>G	G	10000 G 378 91 11100 9 *** FG-379 91	
99PU(N G) F=TH>J	т	100RU G 376 10 10100 14 *** FG=376 10	
100PU(N N'G) (N N')>M	M	10000 C 378 64 375 1 11 2 *** FG=378 64	
100TC B- DKCAY (15 46 5)>A	-	TORNOS & K C = 0.01031 1681/2 001340 208MC=0.000256 48	
100TC B- DECAY (15.46 S)>A	A	100RUS G NC=4.06E-5 6SOC=1.85E-6 3	
100RH EC DECAY (20.8 H)>B	в	100RU2 G EKC=0.0012 6 (1974Ko23)	
100RH EC DECAY (20.8 H)>B	в	100RUS G KC=0.01082 16\$LC=0.001389 20\$MC=0.000256 4\$	
100RH EC DECAY (20.8 H)>B	в	100RUS G NC=4.06E-5 6\$OC=1.85E-6 3	
100RH EC DECAY (20.8 H)>B	в	100RU cG E\$378.93 {I4} (1974Ko23).	
100RH EC DECAY (20.8 H)>B	в	100RU cG M\$ a(K)exp in 1974Ko23 gives mult=M1.E2, but DJ p requires E2;	
100RH EC DECAY (20.8 H)>B	в	100RU2cG (378 q)(1362 q)(q): A(-2)=-0.1 {I5}, A(-4)=+0.4 {I9} (1990KeAA)	
100RH EC DECAY (20.8 H)>B	в	100RU3cG supports E2.	
GAMMA			
		100RU G 610.48 10 E0 0.08 4 EG=610.48	FL=1130.305 JF=0+
100RH EC DECAY (20.8 H)>B	 В	100RU G 610.48 10 E0 0.08 4 EG=610.48 100RU G 610.48 10 E0 0.00009 5 E *** EG=610.48	FL=1130.305 JF=0+ FL=1130.300 JF=0+
100RH EC DECAY (20.8 H)>B 99RU(N,G) E=TH>J	 В І	100RU G 610.48 10 E0 0.08 4 EG=610.48 100RU G 610.48 10 E0 0.00009 5 E *** EG=610.48 100RU G 611 (E0) *** EG=611	FL=1130.305 JF=0+ FL=1130.300 JF=0+ FL=1130.323 JF=0+
100RH EC DECAY (20.8 H)>B 99RU(N,G) E=TH>J 100RH EC DECAY (20.8 H)>B	B I B	100RU G 610.48 10 E0 0.08 4 EG=610.48 100RU G 610.48 10 E0 0.00009 5 E *** EG=610.48 100RU G 611 (E0) *** EG=611 100RU cG TI\$from ce(K)(611 g)/ce(K)(540 g)=0.00020 {I10} (1974Ko23).	FL=1130.305 JF=0+ FL=1130.300 JF=0+ FL=1130.323 JF=0+
100RH EC DECAY (20.8 H)>B 99RU(N,G) E=TH>J 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B	B I B B		FL=1130.305 JF=0+ FL=1130.300 JF=0+ FL=1130.323 JF=0+
100RH EC DECAY (20.8 H)>B 99RU(N,G) E=TH>J 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B	B I B B B		FL=1130.305 JF=0+ FL=1130.300 JF=0+ FL=1130.323 JF=0+
100RH EC DECAY (20.8 H)>B 99RU(N,G) E=TH>J 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B	B I B B B B B		FL=1130.305 JF=0+ FL=1130.300 JF=0+ FL=1130.323 JF=0+
100RH EC DECAY (20.8 H)>B 99RU(N,G) E=TH>J 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B	B I B B B B	EG=610.48 100RU G 610.48 10 E0 0.08 4 EG=610.48 100RU G 610.48 10 E0 0.00009 5 E *** EG=610.48 100RU G 611 (E0) *** EG=611 100RU cG TI\$from ce(K)(611 g)/ce(K)(540 g)=0.00020 {I10} (1974Ko23). 100RU2cG Uncertainty of 0.00001 quoted by 1974Ko23 is probably underestimated 100RU3cG since the peak is very weak in the ce spectrum shown by 1974Ko23. 100RUxcG I g<0.03 (1974Ko23). EG=1201.503	FL=1130.305 JF=0+ FL=1130.300 JF=0+ FL=1130.323 JF=0+ FL=539.5103 JF=2+
100RH EC DECAY (20.8 H)>B 99RU(N,G) E=TH>J 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B 100RH EC DECAY (20.8 H)>B GAMMA	B B B B B A		FL=1130.305 JF=0+ FL=1130.300 JF=0+ FL=1130.323 JF=0+ FL=539.5103 JF=2+ FL=539.48 JF=2+

ConsistencyCheck example: averaging reports

ConsistencyCheck example: error reports

In dataset of 100RU: XB 100RH EC DECAY (20.8 H)

100RU	L 1130.300	7 0+	8.2 PS +1	5-11			
100RU	G 1130.3	3 E0			0.00051	4 E	
		*					<w> Check E0 transition.</w>
100RU	L 1740.993	11 0+					
100RU	G 610.48	10 E0			0.00009	5 E	
		*					<w> Check E0 transition.</w>
100RU	G 1740.6	2 E0			0.00019	4 E	
		*					<w> Check E0 transition.</w>
100RU	L 2099.109	8 2+					
100RU	G 234.0	5 0.0023 8 [M1.E2]	1	0.047 1	6		2
		*					<e> Mult commented from Adopted but inconsistent</e>
							Adopted Mult= this Mult=[M1,E2]
100RU	L 2512.41	3 (4)+					
100RU	Е	0.03	LT 8.7 GI		0.03	LT	
	*						<w> Decay branch is less likely. Please check.</w>
							parent JPI=1- this JPI=(4)+
							spin change=3 parity change=ves
100RU	L 2516.824	6 1-					
100RU	G 349.960	16 0.0379 13[E2]		0.01614			
		*					<e> Mult commented from Adopted but inconsistent</e>
							Adopted Mult= this Mult=[E2]
100RU	G 465.15	3 0.1283 10[E1]		0.010 9		BC	
		*					<e> Mult commented from Adopted but inconsistent</e>
							Adopted Mult= this Mult=[E1]
100RU	L 2569.908	8 (3)-					
100RU	E	0.03	LT 8.7 GI		0.03	LT	
	*						<w> Decay branch is less likely. Please check.</w>
							parent JPI=1- this JPI=(3)-
							spin change=2 parity change=no
100RU	G 470.98	17 0.0037 8 [E1,M2]		0.010 8			
		*					<e> Mult commented from Adopted but inconsistent</e>
				ori	cor ar	5 d	Adopted Mult= this Mult=[E1,M2]
100RU	L 2660.135	17 (1,2+)		en	UI al	iu j	
		*				~	<e> JPI commented from Adopted but inconsistent</e>
				W	arnin	g	Adopted JPI=1,2+ this JPI=(1,2+)
100RU	L 2666.30	3 (1+,2,3+)				<u> </u>	
		*		me	essag	es l	<e> JPI commented from Adopted but inconsistent</e>
							Adopted JPI=(2,3) this JPI=(1+,2,3+)
100RU	L 2801.41	6					
100RU	G 141.27	5 0.0028 5 [D,E2]		0.21 1	6		
		*					<e> Mult commented from Adopted but inconsistent</e>
							Adopted Mult= this Mult=[D,E2]
		*					<w> Mult is inconsistent with JPI (one of JPIs is empty)</w>
							JI= JF(2660.135)=(1,2+)
100RU	G 2262.1	5 0.0061 15 D+Q					
		*					<w> Mult is inconsistent with JPI (one of JPIs is empty)</w>
							JI= JF(539.511)=2+
100RU	L 2915.542	6 2-					
100RU	G 249.25	3 0.0151 6 [D,E2]	1	0.03 2		С	
		*					<e> Mult commented from Adopted but inconsistent</e>

ConsistencyCheck: checklist

This program performs the following checks (PANDORA checks 1-5 plus some others):

- 1. check MS flag in column 78-79 for level record with T1/2>0.1 sec
- 2. check consistency of gamma-ray multipolarity with change of spin and parity between parent and daughter levels
- 3. check consistency of log ft value with change of spin and parity between parent and daughter levels for beta/EC decay dataset following the rule used in PANDORA:

If 3.6<log ft<5.9, then, Ji-1<=Jf<=Ji+1, no parity change

If log ft>=8.5 and 1U, then, Jf=Ji+/-2, with parity change

4. check consistency of HF value with change of spin and parity between parent and daughter levels for alpha decay dataset following the rule used in PANDORA:

If mass=odd and HF<4, then, Jf=Ji, no parity change

If Jf=0 or Ji=0, then, parity change=(-1)^(Jf-Ji), with +1 for no change and -1 for change

- 5. check consistency of spin-parity values in Adopted Levels with those in individual datasets if there is any comment stating that they are from Adopted Levels
- 6. check consistency of information in parent record in decay dataset with the Adopted data for the parent nuclide, like, JPI, T1/2, Q-value

ConsistencyCheck: checklist (cont.)

- 7. check BXLW values in continuation records with RUL values for Adopted Level, Gammas dataset
- 8. check if any level from individual datasets is missing in Adopted Levels dataset or if its XREF tag is missing in the "XREF=" field of the corresponding Adopted Level
- 9. check if the "XREF=" field of an Adopted level has any wrong XREF tag.
- 10. check 0 to 0 transition, parity-change=yes should not happen
- 11. check if Ig is normalized to strongest=100 (PN=6) in Adopted Gammas, and that should not normalized to gamma flagged by ?, *, &
- 12. check decay branch with DJ>2 or (DJ==2 and parity change=no), less likely
- 13. check if any gamma is missing in Adopted Gammas
- 14. check if T1/2 as quoted from Adopted is consistent
- 15. check if MULT and MR as quoted from Adopted is consistent
- 16. check if BXLW is missing in Adopted Levels when T1/2, Ig, MUL are available

checklist is to be discussed and more items are needed

ConsistencyCheck: other functions

Sum ENSDF consistency checking	—		×
Load ENSDF File(s) (load a single file of multiple ENSDFs or load multiple file Start Checking Outputs: Image: start Checking	iles)	nrg 🗌	.avg
Output path: H:\work\evaluation\ENSDF\ Merge input files into a single file Save datasets to individual files by DSIE Open Setup and Merging Tools **Program for checking consister	2	Brows	e
other functions in a pop-up menu from right-click			

National Science Foundation Michigan State University

ConsistencyCheck: other functions (cont.)

Merge input files into a single file	🕌 Setup folders and Merge datasets 🛛 — 🗆 🗙
Save datasets to individual files by DSID	Setup Evaluation Folders Load MassChain Set from a nuclide list Load Nulide List
A123 Ag123 Ba123 Cd123 Cd123 Cs123 1123 In123 In123 Pd123 Rh123 Rh123 Sh12	outfile extension: old new ens xundl path H:\work\evaluation\ENSDF\check Merge Datasets

National Science Foundation Michigan State University