XM128873

-.

IAEA-NDS- 92

INTERNATIONAL ATOMIC ENERGY AGENCY

NUCLEAR DATA SERVICES

DOCUMENTATION SERIES OF THE IAEA NUCLEAR DATA SECTION

The 1988 Version of WIMS-KAERI Library

Summary Report

Jung-Do Kim Korea Atomic Energy Research Institute

<u>Abstract</u>: The WIMS-KAERI Library is a nuclear data library for thermal reactor neutronics calculations. It contains neutron reaction data in 69 groups of neutron energies for more than 130 materials. A magnetic tape copy of the library is available, free of charge.

August 1990

Informal Note

Ļ

•

WIMKAL-88

The 1988 Version of WIMS-KAERI Library

Summary of Contents

Jung-Do Kim

August 1990

Korea Atomic Energy Research Institute

1. Energy Group

•

- 2. Sources of Basic Nuclear Data
- 3. Fission Spectra
- 4. Data Processing Routines
- 5. Burnup Chains
- 6. Resonance Data
- 7. Materials Included in the Library
- 8. Benchmarking

Appendix : Library Format

Attached : "Generation and Benchmarking of a 69-group Cross Section Library for Thermal Reactor Applications", Journal of the Korean Nuclear Society, Vol.21, No.4, Dec. 1989.

- 1 -

ŧ

WIMKAL-88 : The 1988 Version of WIMS-KAERI Library

A new version of 69-group neutron cross section library for thermal reactor design analysis has been generated with the NJOY processing system end with various evaluated nuclear data available from the IAEA Nuclear Data Section. This note summarizes the contents of the library. The library format is described in Appendix. For more details, refer to the attached paper.

1. Energy Group

The energy group structure is 69 groups with energy boundaries corresponding to those of the original WIMS library. The energy boundaries of 69-group are listed in Table 1.

2. Source of Basic Nuclear Data

Most of the evaluated nuclear data were taken from the ENDF/B-V or IV, but some data, not available from the released ENDF/B files, were taken from the JENDL-2 (Rev.1) and ENDL-84.

3. Fission Spectra

Fission spectra of U-235 were generated from Watt spectrum data of ENDF/B-V and the result is listed in Table 2.

4. Data Processing Routines

The NJOY routines and an auxilliary routine, WIMSLIC, were used to generate 69-group data of the WIMS-KAERI library format. The processing path is shown in Fig.1.

5. Burnup Chains

The isotopes B10, Co-59, Er-166, Er-167, and the hafnium isotopes are burnable in addition to actinide nuclides and fission products. The burnup chains are listed in Table 3. For details, refer to figures in the attached paper. The energy release per fission for each of actinides are given in Table 4. And the fission product yield data derived from ENDF/B-V are summarized in Table 5. Yield values for actinides not included in ENDF/B-V were selected from actinide data having similar fission cross sections.

6. Resonance Data

The Goldstein-Cohen parameters used in resonance calculation were taken from the reported data without critical evaluation and listed in Table 6, and resonance tabulations for self-shielding are given in Table 7.

7. Materials Included in the Library

More than 130 materials including reactor fuel, moderator, absorber, structure materials, fission products and actinide nuclides were processed. The list of nuclides included in the WIMKAL-88 library is given in Table 8.

- 3 -

8. Benchmarking

An extensive benchmarking of the WIMKAL-88 library by means of the WIMS-KAERI code, which is a KAERI version of WIMS-D/4, was carried out by comparing results of pin-cell calculations with those of experimentally determined criticalities and depletions. Detailed contents and results are described in the attached paper.

<u>Remark</u>

The WIMKAL-88 library can be used with the WIMS-D/4 code available from the NEA DATA BANK.

and the second second

Group	Energ	IX .	Energy Width	Group	Enenşy	Energy Width
	MEV				<u>ev</u>	
! !	10.0 -	6.0655	3.9345	28	4.00 - 3.30	0.700
2	0.0055	3.0/9	2.3005	1 27	3.50 - 2.50	0.700
3	3.679	1 363	1.440	1 30	2.00 - 2.10	0.500
	2.231	0.821	0.670	1 32	1 50 - 1 30	0.000
2	1.343	0.500	0.321	11	1.30 - 1.15	0.150
	0.021 -	0.3025	0.1975	1	1.15 - 1.121	0.027
1 6	0.3025	0,183	C.1195	15	1.123 - 1.057	0.026
	0.183 -	0.1110	C.072	36	1.097 - 1.071	0.026
10	0.1110 -	0.06734	0.04366	37	1.071 - 1.045	0.026
11	0.06734 -	0.04085	0.02549	38	1.045 - 1.020	C.C25
12	0.04065 -	6.62478	0.01607	39	1.020 - 0.995	0.024
1 13	0.02478 -	C.01503	0.00975	10	0.596 - 0.972	C.C24
14	0.01503 -	0.009118	0.005912	41	0.972 - 0.950	0.022
			<u> </u>	42	0.950 - 0.910	0.040
1				43	0.910 - 0.840	0.060
1	<u>•v</u>			44	0.850 - 0.780	0.070
				45	0.750 - 0.625	0.155
15	9118.0 -	5530.0	3588.0	46	0.625 0.500	0.125
10	5530.0	3519.1	2010.9	7	0.500 - 0.400	0.100
17	3519.1	2239.47	12/9.05		0.400 - 0.350	0.050
	2239.13	806 808	618.202		0.320 - 0.320	0.030
	006 808 -	267 262	610 616		0.300 - 0.300	0.020
20	367 363	148 728	218 514		0.300 - 0.200	0.020
22	148 728 -	75.5014	73.2266	1 6	0.250 + 0.220	0.010
1 23	75.5018 -	48.052	27.4494	1 5	0.220 - 0.180	0.040
24	48.052 -	27.700	20.352	1 55	0.180 - 0.140	0.040
25	27.700 .	15.968	11.732	56	0.140 - 0.100	0.0+0
26	15.968 -	9.877	6.091	57	0.100 - 0.080	0.020
27	9.877 -	4.00	5.877	58	0.080 - 0.067	0.013
·			1	- 1 59	0.067 - 0.058	0.009
				60	0.058 - 0.050	0.008
				61	0.050 - 0.042	0.005
				62	0.0=Z - 0.035	0.007
				1 23	u.035 - 0.030	0.005
				1 4	0.030 - 0.025	0.005
				22	0.020 - 0.020	0.005
				1 27	0.020 - 0.015	0.005
					0.010 - 0.010	0.005
					0.005 + 0	0.005
				07	1 0.000 - 0.	1 0.003

Table 1. Energy Boundaries for WIMS 69-Group Libraries

1

Table 2. Fission Spectra for 69-Group

69-Group	Library
Group	Spectrum
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	$\begin{array}{c} 2.595E-2\\ 1.139E-1\\ 2.138E-1\\ 2.300E-1\\ 1.768E-1\\ 1.111E-1\\ 6.330E-2\\ 3.307E-2\\ 1.651E-2\\ 8.094E-3\\ 3.913E-3\\ 1.874E-3\\ 8.931E-4\\ 4.239E-4\\ 2.010E-4\\ 8.872E-5\\ 4.508E-5\\ 2.290E-5\\ 1.163E-5\\ 2.670E-6\\ \end{array}$
Total	1.0

- 6 -

Table 3. Burn-up Data

.

Nuclide	ID NO.	Capture Product	Decay Product	Half Life (sec)	Decay Constant (sec ⁻¹)
B-10	50 10	1			
Co-59	27059	- 1			
Er-166	68166	68167			
Er-167	68167	-			
Hf-174	72174	-			
Hf-176	72176	72177			-
Hf-177	72177	72178			
Hf-178	72178	72179			
Hf-179	72179	72180			
Hf-180	72180	-			
Th-232	90232	91233	00000	0.0000-0	a 05105 a
Pa-233	91233	92234	92233	2.3328E+6	2.9713E-7
0 -233	92233	92234			
0 -234	92234	92235			
0 -235	92235	92236			
0 -236	92236	92237	00007	F 00000.F	1 10057 6
0 -237	92237	92238	93237	5.8320E+5	1.18825-0
Np-237	93237	93238			
0 -238	92238	93239	04000	1 0001015	0.700CF C
Np-238	93638	93239	94238	1.62916+5	3.78901-0
Pu-238	94238	94239	0.4000	1 0220515	0.000 C
Np-239	93639	94240	94239	2.03392+5	3.40806-0
Pu~239	94239	94240	ļ		
Pu-240	94240	94/41	05241	A C200010	1 40425 0
190-241	94241	94/4/	95241	4.03092+0	1.4942E-9
Am~241	93641	95346	{	{	1
PU-242	94242	95243	00040	E TEOETIA	1 20265 5
AM-242g	1 90646	95243	90242	0.7030L+4	1.20206-3
1 HIII- 2420	52046	95245		1 4075547	A 0247E-8
UH-242	05242	90243	1	1.40/36+/	9.90412-0
AII-243	06243	06244	1	1	
Cm-244	06243	90644	1		
00-244	30444	1			I

- 7 -

٠

Table	3.	(continued)
	• •	(

Nuclide	ID NO.	Capture Product	Decay Product	Half Life (sec)	Decay Constant (sec ⁻¹)
Kr-83 Mo-95 Tc-99 Ru-101 Ru-103 Rh-103 Rh-105 Pd-105 Pd-105 Pd-108 Ag-109 Cd-113 In-115 I-127 I-135 Xe-131 Xe-135 Cs-133	36083 42095 43099 44101 44103 45103 45105 46105 46105 46108 109 48113 115 53127 53135 54131 54135 55133	Product 47109 55134	Product 45103 461 05 54135 55135	(sec) 3.3938E+6 1.2730E+5 2.3796E+4 3.2724E+4	(sec ⁻¹) 2.0424E-7 5.4450E-6 2.9129E-5 2.1182E-5
Cs-134 Cs-135 Nd-143 Nd-145	55134 55135 60143 60145	55135		6.5070E+7	1.0652E-8
Pm-147* Pm-147 Pm-1483 Pm-1488 Pm-148 Sm-149 Sm-149 Sm-148 Sm-149 Sm-149 Sm-150 Sm-151 Sm-152 Eu-153 Eu-155 Gd-157 Pseudo	61147 61347 61148 61148 61149 62147 62148 62149 62150 62151 62152 63153 63154 63155 64157 902	61148 61348 61149 61149 62150 62148 62149 62150 62151 62152 63153 63154 63155	62147 62147 62148 62148 62149	8.2786E+7 8.2786E+7 4.5397E+5 3.5683E+6 1.9109E+5	8.3728E-9 8.3728E-9 1.4939E-6 1.9425E-7 3.6273E-6
Dummy	237	<u> </u>	92237	0.593	1.0
* Pm-147	(61147) · (61347) ·	537 Pm-148 (Pm-148m((61148) (61348)		

$$(61347) - Pm - 148 (01)$$

- 8 -

Nuclide	Energy Re	lease per Fission
NUCILUE	MeV	Joules/mole x 10 ⁻²⁴
$\begin{array}{c} Th-232\\ Pa-233\\ U&-233\\ U&-234\\ U&-235\\ U&-236\\ U&-237\\ U&-238\\ Np-237\\ Np-238\\ Np-239\\ Pu-238\\ Pu-239\\ Pu-239\\ Pu-240\\ Pu-241\\ Pu-242\\ Am-241\\ Am-242m\\ Am-243\\ Cm-244\\ \end{array}$	189.76 181.71 199.74 199.48 201.74 201.79 189.10 203.89 206.50 210.11 201.29 208.09 210.60 207.07 213.05 212.10 213.77 215.10 216.33 218.55	1.8309E-11 1.7532E-11 1.9272E-11 1.9247E-11 1.9465E-11 1.9469E-11 1.9672E-11 1.9924E-11 2.0272E-11 1.9924E-11 2.0077E-11 2.0320E-11 1.9979E-11 2.0556E-11 2.0464E-11 2.0625E-11 2.0754E-11 2.0872E-11 2.1087E-11

Table 4. Energy Release per Fission Including Contribution from Capture

Nuclido	Nuclide		Fission Yield	
NUCLIUE	ID NO.	Th-232	U-233	U-235
Nuclide KR-83 MO-95 TC-99 RU-101 RU-103 RH-103 RH-105 PD-105 PD-105 PD-108 AG-109 CD-113 IN-115 I-127 I-135 XE-131 XE-135 CS-133 CS-134 CS-135 ND-143 ND-145 PM-147* PM-148g PM-148m PM-149 SM-147 SM-148 SM-149 SM-150 SM-151 SM-152 EU-153 FU-154	ID NO. 36083 95 43099 44101 44103 45103 45105 46105 46105 46105 46108 109 48113 115 53135 54131 54135 55133 55134 55135 560143 60145 61147 61347 61347 61148 61348 61149 62147 62148 62150 62151 62152 63153 63154	Th-232 2.22272E-02 5.37418E-02 2.87561E-02 7.30503E-03 1.52769E-03 0. 4.61732E-04 0. 6.26151E-04 6.09107E-04 8.49075E-04 6.92447E-04 9.07700E-04 5.35142E-02 1.62119E-02 3.08900E-04 3.96380E-02 4.22102E-09 2.00000E-07 6.51899E-02 5.28346E-02 1.59600E-07 1.41532E-02 4.49109E-11 1.08026E-10 8.83247E-03 0. 0. 0. 0. 3.70090E-08 3.14161E-03 7.59054E-04 3.32460E-04	U-233 1.01797E-02 6.19043E-02 4.87389E-02 3.23116E-02 1.66930E-02 0. 4.82949E-03 0. 6.31809E-04 4.41868E-04 1.34345E-04 1.34345E-04 1.34345E-04 1.34345E-04 1.34345E-04 1.3251E-04 5.51717E-03 4.91300E-02 3.60597E-02 1.28300E-02 1.32045E-05 1.85500E-04 5.89179E-02 3.39175E-02 9.27479E-03 8.22481E-03 3.53854E-09 9.80595E-09 7.77062E-03 0. 0. 0. 2.80184E-05 3.15328E-03 2.13551E-03 1.64782E-03 1.647	U-235 5.36047E-03 6.49490E-02 6.11911E-02 5.07374E-02 3.04185E-02 0. 9.67387E-03 0. 6.70610E-04 3.44293E-04 1.07886E-04 1.25602E-03 6.29661E-02 2.88306E-02 2.41920E-03 6.70172E-02 1.26972E-07 2.08000E-05 5.93726E-02 3.91741E-02 1.19428E-02 1.05908E-02 4.05910E-11 7.44834E-11 1.06662E-02 0. 0. 3.03932E-07 4.18395E-03 2.67834E-03 1.61350E-03 2.67834E-03 2.67834E-03 1.61350E-03 2.67834E-03 1.61350E-03 2.67834E
EU-154 EU-155 GD-157 PSEUDO DUMMY	63154 63155 64157 902 237	2.11051E-11 3.82793E-05 9.56231E-06 3.07000E-C1 0.	2.27906E-07 2.17930E-04 6.32739E-05 3.17000E-01 0.	2.68940E-08 3.20479E-04 6.15363E-05 3.04000E-01 0.

Table 5. Fission Product Yield Data

,

* Two identical nuclides, Pm147, are included to model the branching ratio to Pm148m and Pm148g.

- 10 -

Table 5'. (continued)

•

Nuclide	Nuclide		Fission Yield	
NUCLIVE	ID NO.	U-236	U-238	Np-237
Nuclide KR-83 MO-95 TC-99 RU-101 RU-103 RH-103 RH-105 PD-105 PD-105 PD-108 AG-109 CD-113 IN-115 I-127 I-135 XE-131 XE-135	ID NO. 36083 95 43099 44101 44103 45103 45105 46105 46105 46108 109 48113 115 53127 53135 54131 54135	U-236 5.24215E-03 6.40997E-02 5.91164E-02 5.29346E-02 4.20658E-02 0. 2.47029E-02 0. 3.45685F-03 1.43111E-03 3.75146E-04 5.12365E-04 2.26471E-03 5.63072E-02 3.03390E-02 1.58470E-03	U-238 3.93454E-03 5.10515E-02 6.24788E-02 6.08435E-02 6.22897E-02 0. 3.97489E-02 0. 6.01109E-03 2.67089E-03 5.18167E-04 3.38487E-04 1.29954E-03 6.83489E-02 3.23266E-02 2.79500E-04	Np-237 4.81512E-03 5.69875E-02 6.19157E-02 6.17895E-02 5.58421E-02 0. 3.17882E-02 0. 9.53713E-03 4.46214E-03 5.08817E-04 4.89097E-04 3.58632E-03 6.66004E-02 3.69670E-02 8.82930E-03
CS-133 CS-134 CS-135 ND-143 ND-145 PM-147 PM-147 PM-148g PM-148g PM-148g PM-149 SM-147 SM-148 SM-149 SM-149 SM-147 SM-148 SM-149 SM-150 SM-151 SM-152 EU-153 EU-154 EU-155 GD-157 PSEUDO DUMMY	55133 55134 55135 60143 60145 61147 61347 61148 61348 61149 62147 62148 62149 62150 62151 62152 63153 63154 63155 64157 902 237	7.02632E-02 1.70998E-07 4.30000E-06 6.08466E-02 3.66786E-02 1.24053E-02 1.24053E-02 1.24053E-02 1.24999E-09 2.99997E-09 1.36911E-02 0. 0. 1.24999E-06 4.22682E-03 3.87746E-03 2.55329E-03 8.72991E-09 9.23191E-04 2.30798E-04 3.05000E-01 0.	6.61965E-02 3.14368E-09 2.0000E-07 4.55850E-02 3.75491E-02 1.34120E-02 1.34120E-02 1.18937E-02 2.45287E-11 5.88690E-11 1.61003E-02 0. 0. 0. 0. 8.00938E-08 8.01067E-03 5.20746E-03 4.10947E-03 3.44404E-10 1.32803E-03 3.87184E-04 3.07000E-01 5.07500E-02	6.63938E-02 3.11004E-06 6.05000E-05 4.70258E-02 3.48214E-02 1.17171E-02 1.03906E-02 2.88004E-08 6.91010E-08 1.27463E-02 0. 0. 1.65502E-05 7.13773E-03 4.56314E-03 3.59421E-03 1.99003E-07 1.19214E-03 3.33005E-04 3.06000E-01 0.

Table 5. (continued)

Nuclido	Nuclide		Fission Yield	
NUCITUE	ID NO.	Pu-239	Pu-240	Pu-241
KR-83	36083	2.95103E-03	3.03097E-03	2.12726E-03
MO-95	95	4.89429E-02	4.39602E-02	4.07359E-02
TC-99	43099	6.15613E-02	5.99595E-02	6.27018E-02
RU-101	44101	5.89887E-02	6.05317E-02	6.00612E-02
RU-103	44103	6.94980E-02	6.71258E-02	6.15095E-02
RH-103	45103	0.	0.	0.
RH-105	45105	5.36227E-02	5.54896E-02	6.14640E-02
PD-105	46105	0.	0.	0.
PD-108	46108	2.17260E-02	3.03572E-02	3.93759E-02
AG-109	109	1.87613E-02	1.79176E-02	2.25404E-02
CD-113	48113	6.40757E-04	1.57070E-03	1.43542E-03
IN-115	. 115	3.57286E-04	6.63816E-04	4.22419E-04
1-127	53127	4.89307E-03	4.18768E-03	2.29386E-03
I-135	53135	6.44939E-02	6.74761E-02	7.06975E-02
XE-131	54131	3.84640E-02	3.54415E-02	2.84278E-02
XE-135	54135	1.15238E-02	6.98430E-03	2.31400E-03
CS-133	55133	6.97542E-02	7.00541E-02	6.76991E-02
CS-134	55134	9.89320E-06	1.82018E-06	1.85052E-07
CS-135	55135	1.58900E-04	4.41000E-05	6.70000E-06
ND-143	60143	4.42815E-02	4.72014E-02	4.70421E-02
ND-145	60145	2.99151E-02	3.27715E-02	3.34353E-02
PM-147*	61147	1.08270E-02	1.13360E-02	1.25489E-02
PM-147	61347	9.60135E-03	1.04961E-02	1.11283E-02
PM-148g	61148	1.12036E-07	1.48015E-08	2.22062E-09
PM-148m	61348	2.36076E-07	3.55035E-08	4.68132E-09
PM-149	61149	1.23930E-02	1.36947E-02	• 1.52403E-02
SM-147	62147	0	0.	0.
SH-148	62148	<u>0</u> .	0	<u> </u>
SH-149	62149	0.	0.	U.
SH-150	62150	1.15838E-05	1.14011E-05	2.78078E-06
SH-151	62151	7.72062E-03	8.43189E-03	9.36900E-03
SH-152	62152	5.85171E-03	6.57575E-03	7.46591E~03
EU-153	63153	3.63693E-03	5.79670E-03	5.48158E-03
EU-154	03154	9.22299E-07	1.74017E-07	3.62102E-08
E0-122	03155	1.054776-03	Z.47628E-03	2.41740E-03
160-157	0415/	7.409/08-04	1.30401E-03	1.37162E-03
PSEUDU	902	3.29000E-01	3.120008-01	3.09000E-01
DOUNT	631	υ.	U	U.

.

4

IAEA NUCLEAR DATA SECTION, P.O. BOX 100, A-1400 VIENNA

Table 5. (continued)

1

.

.

.

. ·

,

R-103 R-105 R-103 R-105	ADLTJON	
44109 44109 44109 44109 44109 55113 55155113 551	ID NO.	Nuclide
2.40604E-03 4.02190E-02 5.88580E-02 5.88580E-02 5.88550E-02 5.88550E-02 5.88550E-02 5.88550E-02 3.02439E-03 3.02439E-03 3.02439E-03 5.80002E-02 1.12707E-02 1.228003E-02 1.228003E-03 1.83918E-03 1.8	Pu-242	Fission Yield

•

,

.

- 13 -

.

.

Goldstein-Cohen Parameters used in the '88' Library <u>.</u> Table

· .

÷

λ -Value	00000000000000000000000000000000000000
ID NO.	49113 49113 65000 65166 65166 65166 65166 65166 65166 65166 65166 65166 92233
Nuclide	In-113 Solution of the second state of the sec
X-Value	
ID NO.	80000000000000000000000000000000000000
Nuclide	H H H H H H H H H H H H H H H H H H H

.

- 14 -

٠

٠

Table 7. Resonance Tabulations for Self-Shielding

Nuclide	ID NO.	Temp ° K	σ . Βί	SITIS					
HF-176 HF-177 HF-177 HF-178 HF-179	72176 72176 72178 72179	300 600	5.0x10 ²	5.0x10ª	5.0x10 ³ "	5.0x10 ⁴	5.0x10 ⁼	1.0x10 [±]	•
Th-232	90232	300 600	1.0x10 ¹	5.0x10 ¹	1.0x10 ²	3.0x10 ²	1.0x10 ³	1.0x10*	1.0x10 ¹⁰
Pa-233 11 -233	91233 92233	* *	1.0x10 ⁼ 3.0x10 ⁼	1.0x10 ³ 1.0x10 ³	1.0x10 3.0x10	1.0x10 ⁶ 1.0x10 ⁶	1.0x10 [±] 0	1.0x10 ^{2.0}	
U -234	92234 92235	# #	3.0x10 ² 5.0x10 ²	1.0x10 ³	5.0x10 ³ 2.0x10 ³	1.0x10* 3.0x10*	1.0x10 ⁻ 6.0x10 ⁻	5.0x10 1.0x10	1.0x10 [±] 1.0x10 ⁵
U -236 U -238	92236 92238	= t	3.0x10 ¹	1.0x10 ⁴ 5.0x10 ¹	5.0x10 ⁴ 1.0x10 ²	1.0x10 ^e 1.5x10 ^a	1.0x10 ⁶ 3.0x10 ²	1.0x10 ^{1 °} 1.0x10 ³	1.0x10*
Np-237 Np-239	93237		1.0x10 ²	3.0x10 ²	1.0x10 ⁴	1.0x10*	1.0x10 ^{2 °}		
Pu-239	94239	=	1.0x10 ²	3.0x10 ^a	7.0x10 ²	1.5x10 [®]	3.0x10 ³	5.0x10*	1.0x10*
Pu-240	94240 94241	1 = 1	1.0x10 ^a	1.0x10 ³	1.0x10 ⁴	1.0x10 ⁵	1.0x10 ¹ °		
PU-242 Am-241 Am-2420	94242	= =	1.0x10 ²	1.0x10"	1.0x10 ⁴	1.0x10 ^{2 o}			
Am-242m	95242	2 2		2 2					
Cm-242 Cm-243	96242	= =		8 2					
Cm-244	96244			=					

- 15 -

Table 8. List of Nuclides in the Library

Nuclido	Nuclide	Source Data	Thermal S	cattering	Resonance
MUCTIOE	ID No.	(MAT No.)	Mode1	Temp.°K	Tabulation
Hydrogen	1001	ENDF/B-V (1301)	Free Gas	300	
H bound in H2O	1011	ENDF/B-V, II1 (1301, 1002)	S(α,β)	296, 350 400, 450 500, 600	
H bound in ZrH	1021	". (1301, 1097)	S(α,β)	296, 400 500, 600 800, 1200	
H bound in H2O	1111	UKNDL	Nelkin	293, 333 373, 423	
Deuterium	1002	ENDF/B-IV (1120)	Free Gas	300	
D bound in D20	1012	ENDF/B-IV, 111 (1120, 1004)	S(α,β)	296 , 350 400, 450 500 600	
D bound in D2O	1222	ŪKNDL	Effective Width	293, 450 600	
Helium - 3	2003	ENDF/B-V (1146)	Free Gas	300	
Helium - 4	2004	ENDF/B-V (IV) (1270)	π	**	
Lithium - 6	3006	ENDF/B-V (1303)	"	"	
Lithium - 7	3007	ENDF/B-V (IV) (1272)	n	11	
Beryllium - 9	4009	(1287)	n	n	

.-

ł

.

•

•

.

Nuclida	Nuclide	Source Data	Thermal S	cattering	Resonance
NUCIIOE	ID No.	(MAT No.)	Mode1	Temp.°K	Tabulation
Boron - 10	10	ENDF/B-V (1305)	Free Gas	300	
Boron - 10 *	5010	" (1305)	"	"	
Boron - 11	5011	ENDF/B-V (IV) (1160)	11	17	
Carbon	6000	ENDF/B-V (1306)	τι	296	
Graphite	6001	ENDF/B-V, 111 (1303, 1065)	S(α,β)	296, 400 500, 600 800, 1200	
Nitrogen - 14	7014	ENDF/B-V (IV) (1275)	Free Gas	300	
Oxygen - 16	8 016	" (1276)	"	296, 350 400, 450	
Fluorine	9 019	ENDF/B-1V (1277)	"	300	
Sodium	11023	" (1156)	u.	n	
Aluminium	13027	" (1193)		300, 600 900	
Silicon	14000	" (1194)	n	n	
Phosphorus - 31	15031 ·	ENDL-84 (7821)	n	300	
Sulfur - 32	16032	" (7822)	н	n	

* Burnable

•

•

Nuclida	Nuclide	Source Data	Thermal S	cattering	Resonance
MUCTIVE	ID No.	(MAT No.)	Mode1	Temp.°X	Tabulation
Potassium	19000	ENDF/B-V (IV) (1150)	Free Gas	300	·
Titan	22000	ENDF/B-IV (1286)	Π	Π	
Vanadium	23000	" (1136)	Π	n	
Chromium	24000	" (1191)	Π	300, 600 900	
Manganese - 55	25055	" (1197)	n .	Π	
Iron	26000	" (1192)	Π	57	
Cobalt - 59	27059	" (1199)	11	300	
Nickel	28000	" (1190)	n	300, 600 '900	
Copper	29000	" (1295)	π	300	
Copper - 63	29063	JENDL-2 (2291)	Π	π	
Zirconium	40000	ENDL-84 . (7841)	π	300, 600 900	
Zircaloy - 2	40002	ENDF/B-IV (1284)	π	π.	
Niobium - 93	41093	ENDF/B-V (IV) (1189)	n -	Π	

- 18 -

.

N114	Nuclide	Source Data	Thermal Scattering		Resonance
NUCIIO	ID No.	(MAT No.)	Node1	Temp.°K	Tabulation
Molybdenum	42000	ENDF/B-IV (1287)	Free Gas	300	
Molybdenum - 92	42092	ENDF/B-V (9278)	11	41	
Molybdenum - 94	42094	" (9281)		41	
Molybdenum - 95	42095	" (9282)	"	n	
Molybdenum - 96	42096	" (9283)	n	Te	
Molybdenum - 97	42097	" (9284)	11		
Molybdenum - 98	42098	" (9285)	n	11	
Molybdenum - 99	42099	" (9286)		17 -	
Molybdenum - 100	42100	" (9287)	Ħ	n	
Silver - 107	47107	" (1407)	"	rt	
Silver - 109	47109	" (1409)	, n	11	
Cadmium	48000	ENDF/B-V (IV) (1281)	"	"	
Indium - 113	49113	ENDF/B-V (9473)	n -	n	

-

Nuclida	Nuclide	Source Data	Thermal S	cattering	Resonance
MACTINE	ID No.	(MAT No.)	Model	Temp.°K	Tabulation
Indium - 115	49115	ENDF/B-V (9477)	Free Gas	300	
Tin	50000	ENDL-84 (7850)	Π	**	
Gadolinium	64000	ENDF/B-IV (1030)		Π	
Dysprosium - 164	66164	ENDF/B-V (IV) (1031)	π	Π	
Erbium - 166	68 166	ENDF/B-V (9875)	"	"	
Erbium - 167	68167		"	, n	-
Lutetium - 176	71176	ENDF/B-V (IV) (1033)	n 	#	
Hafnium	72000	ENDL-84 (8305)	π	n	
Hafnium - 174	72174	JENDL-2 (2721)	Π	300, 600	~
Hafnium - 176	72176	" (2722)	Ŧ		72176.0
Hafnium - 177	72177	" (2723)	Ħ		72177.0
Hafnium - 178	72178	" (2724)	Π	π	72178.0
Hafnium - 179	72179	" (2725)	H	'n	72179.0

- 20 -

.

•

(Continued) Table 8.

Nucliđe	Nuclide	Source Data	Thermal Scattering		Resonance
	ID No.	(MAT No.)	Mode1	Temp.°K	Tabulation
Hafnium - 180	72180	JENDL-2 (2726)	Free Gas	300, 600	72180.0
Tantal - 181	73181	ENDF/B-V (IV) (1285)	11	300	
Gold - 197	79197	ENDF/B-V (1379)	**	11	
Lead	82000	ENDF/B-IV (1288)	"	Π	

Fission Product

Nuclide	Nuclide	Source Data	Thermal S	cattering	Resonance
MUCIIOE	ID No.	(MAT No.)	Mode1	Temp.°K	Tabulation
Krypton - 83	36083	ENDF/B-V (1333)	Free Gas	600_ ·	
Molybdenum - 95	95	" (9282)	. "	n 	
Technetium - 99	43099	" (1308)		п • э	
Ruthenium - 101	44101	" (9330)	, n	H 	
Ruthenium - 103	44103	" (9332)		'n	
Rhodium - 103	45103	" (1310)		n -	
Rhodium - 105	45105	" (9355)	n	n	

- 21 -

ł

4

/

~

; n**i**

ł

-

Nuclida	Nuclide	Source Data	Thermal S	cattering	Resonance
Unciide	ID No.	(MAT No.)	Model	Temp.°K	Tabulation
Palladium - 105	46105	ENDF/B-V (9382)	Free Gas	600	
Palladium - 108	46108	" (9386)			
Silver - 109	109	" (1409)	π		
Cadmium - 113	48113	" (1318)	ų	64	
Indium - 115	115	" (9477)	57	"	
Iodine - 127	53127	" (9606)	n	Π	
Iodine - 135	53135	" (9618)		n	
Xenon - 131	54131	" (1351)	n	, "	1.1.4.22
Xenon - 135	54135	" (1294)	n	n	
Cesium - 133	55133	" (1355)		п.	
Cesium - 134	55134	יי (9663) י∶		ΠΞ	
Cesium - 135	55135	" (9665)		n	1.2
Neodymium - 143	60143	" (9764)	Ħ	H	

- 22 -

ż

ì

Pholida	Nuclide	Source Data	Thermal S	cattering	Resonance
MUCTIVE	ID No.	(MAT No.)	Mode1	Temp. °K	Tabulation
Neodymium - 145	60145	ENDF/B-V (9766)	Free Gas	600	
Promethium -147*	61147	۳ (9783)	π	Π	
Promethium -147	61347	" (9783)	π	11	
Promethium -148g	61148	" (9784)	π	n ·	
Promethium -148m	61348	" (9785)	"	Π	
Promethium -149	61149	(9786)	n	Π	· .
Samarium - 147	62147	я (9806)	."	n	·
Samarium - 148	. 62148	я (9807) (19807)	11		1005 - 1 1
Samarium - 149	62149	" (1319)	ton∎ a Garant	. п . <u>-</u>	Randi I
Samarium - 150	62150	и (9809)		- '	27722-4 -
Samarium - 151	. 62151	n (9810)	- N	.	
Samarium - 152	62152	(9811)	N		±

* Two identical nuclides ,Pm-147, are included to model the branching ratio to Pm-148m and Pm-148g.

- 23 -

.....

- - . . .

Nuclida	Nuclide	Source Data	Thermal Scattering		Resonance
NUCIIOE	ID No.	(MAT No.)	Model	Temp.°K	Tabulation
Europium - 153	63153	ENDF/B-V (1359)	Free Gas	600	
Europium - 154	6 3154	" (1293)	"	"	
Europium - 155	63155	" (9832)		••	
Gadolinium -157	64157	EVDF/B-IV (794)	**		
Pseudo F.P	902	Original WIMS			
Dummy	237	$\sigma a = 1.0 \times 10^{-5}$	barns	l /	{

.

۰.

...

Nuclido	Nuclide	Source Data	Thermal Scattering		Resonance
NUCIIOE	ID No.	(MAT No.)	Model	Temp.°K	Tabulation
Thorium - 232	90232	ENDF/B-IV + V (1296, 6390)	Free Gas	300, 6 00 900	90232.0
Thorium - 232	90332	ENDF/B-IV (1296)	61	*1	90332.0
Protactinium-233	91232	ENDF/B-V (1391)	H	77	91233.0
Uranium - 233	92233	ENDF/B-IV (1260)			92233.0
Uranium - 234	92234	ENDF/B-V (1394)	n -	n	92234.0

Actinide

- 24 -

· Nuclide	Nuclide	Source Data	Thermal S	cattering	Resonance
MULIIDE	ID No.	(MAT No.)	Model	Temp.°K	Tabulation
Uranium - 235	92235	ENDF/B-V (1395)	Free gas	300, 600 900	92235.0
Uranium - 236	92236	" (1396)	97	57	92236.0
Uranium - 237	92237	" (8237)	11	Ħ	
Neptunium - 237	93237	" (1337)	n	W	93237.0
Uranium - 238	92238	ENDF/B-IV + V (1262, 6298)	ŧ	n	92 238.0
Uranium - 238	92338	ENDF/B-IV (1262)	**	TT .	92338.0
Neptunium - 238	93238	ENDF/B-V (8338)	n	n	
Plutonium - 238	94238	" (1338)	**		94238.0
Neptunium - 239	93239	JENDL-2 (2932)	Π		93239.0
Plutonium - 239	94239	ENDF/B-IV (1264)	n	, n	94239.0
Plutonium - 240	94240	" (1265)			94240.0
Plutonium - 241	94241	" (1266)	n	n	94241.0
Americium - 241	95241	ENDF/B-V (1361)	".	"	95241.0

.

Nuclide	Nuclide	Source Data	Thermal Scattering		Resonance
	ID No.	(MAT No.)	Mode1	Temp.°K	Tabulation
Plutonium - 242	94242	ENDF/B-V (1342)	Free Gas	300, 600 900	94242.0
Americium - 242g	95242	" (8542)	ŧr	n	9 5242.0
Americium - 242m	95342	JENDL-2 (2953)	n	11	95342.0
Curium - 242	9 6242	" (8642)	11		96242.0
Americium - 243	95243	JENDL-2 (2954)	TÍ		95243.0
Curium - 243	96 243	" (1343)		1	96243.0
Curium - 244	96244	" (1344)			96244.0
1/v absorber	1000			l	

•

. -

•-

•

.

.

-

•

. , .

•

.

.

- 27 -

Appendix

WIMS-KAERI Library Format

I. General Index File

The first file on the tape contains the following general information :

Record 1 : L. N. NO, N1, N2, N3, NNF, NNFP

- Number of nuclides on this library tape.
- Total number of groups (= N1+N2+N3).
- Number of groups into which there is a fission source.
- Numbers of fast, resonance and thermal groups.
- Numbers of fissile and fission product nuclides.

Record 2 : (NIN(I), I=1, L)

- Nuclide identification numbers for the L nuclides on the tape ; these form an index to the nuclide files.
- Record 3 : (GB(J), J=1, N+1)• Energy group boundaries - in order of decreasing energy.
- Record 4 : (FS(J), J=1, NO)
 - Fission source spectrum, sums to 1.0.
- Record 5, to L+4 : JC, JB, (AA(k), JJ(k), K=J, JA) where JA=JC/2-1 and may differ for each record

A record for each nuclide describing all nuclides produced by burnup of this nuclide. This record contains :

- Length of record (JC), NIN(JB).
 Yield (normally 1.0) and NIN of nuclide formed by neutron capture in nuclide JB.
- Decay constant of nuclide JB and NIN of nuclide formed by decay.
- Fission energy yield and indicator NFA (see below).
- Pairs of numbers giving yield and NIN of fission
- products produced by fission of JB. Pairs of numbers 0.0 and NIN of any nuclides formed only indirectly from JB (e.g., U238 + n + n \rightarrow Pu240, Sm149 + n \rightarrow Sm150, requiring specification of Pu240, Sm150 respectively).

The indicator NFA is equal to NF for nuclide JB unless nuclide JB is a fission product ; in this case NFA is -1 if nuclide JB does not have a resonance tabulation associated with it, ϵ nd -2 if it does. If yield and NIN of nuclide formed by capture in nuclide JB are both set to zero, no capture product will be assumed in any subsequent calculation of burnup.

₽ ;

File Mark

II. Nuclide Files

For each of the nuclides specified in record 2 of the general index file, there is a file of data cortaining the following information :

- Record 1 : J, AW, IAN, NF, NT, NZZ
 - NIN, atomic weight, atomic rumber, trigger (see below), number of temperatures at which thermal data tabulated, number of resonance tabulations associated with this nuclides.

NF is the fissile and resonarce trigger, and may take the following values :

- 0 non-fissile, no resonance tabulation
- 1 non-fissile, resonance absorption tabulation
- 2 fissile, tabulation of resonance absorption only
- 3 fissile, tabulation of resonance absorption and fission
- 4 fissile, no resonance tabulation

Note that the atomic weight should be exact because it is used in WIMS for calculating number densities from physical densities.

Record 2 : (PSCAT(J), J=1, N=2)

• •

 Potential scattering cross section, fcr resonance groups.

 $(XI\tilde{S}S(J), J=1, N2)$

• Slowing down power divided by lethargy width, for resonance groups.

(TR(J), J=1, N1+N2)
• Transport cross section for fast and resonance groups.
(ABS(J), J=1, N1+N2)

 Absorption cross section for fast and resonance groups.

· C-2

(CHI(J), J=1, N2) Not used. (ALAMDA(J), J=1, N2) Goldstein-Cohen parameter, for resonance groups.

Record 3 : (XNUFIS(J), J=1, N1+N2), (FIS(J), J=1, N1+N2) • Fission yield and fission cross sections for fast and resonance groups.

> Record 3 is present only for fissile nuclides (i.e., NF \geq 2). For nuclides with resonance tabulation(s), the resonance group cross sections are 'infinitely dilute' (i.e., no resonance shielding). Note that these cross sections can in general be consistent only with one resonance tabulation.

Record 4 : K, (AA(I), I=1, K)

 Condensed scattering matrix for scattering from fast and resonance groups.

The vector AA(I) may be split into N1+N2 blocks of the form

AS, AL, (VECTOR(I), I=1, L), where the numbers in VECTOR are the non-zero scattering cross sections from a group, L=AL is the number of these cross sections, and AS is the position of the self-scatter term in the array VECTOR. Note that AS=1 if there is no upscatter.

Record 5 : (TEMP(J), J=1, NT)

• Temperatures(K) at which thermal data is tabulated, in ascending order. (If NT=1 there is one thermal data tabulation, which is then used for all tempera-tures in WIMS : in this case TEMP(1) is usually arbitrarily set equal to 300 K).

Following this record, there are three records for each temperature as follows :

Record 6 : (TR(J), J=N1+N2+1, N), (ABS(J), J=N1+N2+1, N) Transport and absorption cross sections for thermal groups (for the appropriate temperature).

Record 7 : (XNUFIS(J), J=N1+N2+1, N), (FIS(J), J=N1+N2+1, N) Fission yield and fission cross sections for thermal groups.

Record 7 is present only for fissile nuclides (i.e., NF \geq 2).

Record 8 : KA, (AA(I), (I=1, KA))

• Condensed scattering matrix for scattering from thermal groups. The data are stored as described for record 4.

After the thermal data for all temperatures specified in record 5, data for this nuclide are terminated.

File Mark.

This concludes the description of the L nuclide files 2 to L+1.

III. Resonance Data Files

The resonance data are contained in N2 files, one for each resonance group. Each file contains one (absorption) or two (absorption and fission yield) records for ϵ ach resonance tabulation, depending on the trigger NF in the nuclide data of the nuclide to which the tabulation refers. The records are in the order of the NIN's in the index (Record 2, General Index File). The records contain :

> RIN, M1, M2, (T(JB), JB=1, M1), (SIGP(JD), JD=1, M2), ((RSIG(JD, JB), JD=1, M2), JB=1, M1)

• Resonance identification number, number of temperatures and $\sigma o's$, temperatures, $\sigma o's$, and resonance cross sections ordered σo within temperature.

Note that the upper value of σo in the tabulation is ignored and replaced by 'infinity' when WIMS interpolates in the RSIG table. Following the records for each resonance identification number, the data for each group are terminated by

One record : 0.0, 1, 1, 0.0, 0.0, 0.0

File Mark.

C-4

IV. Pl Scattering Matrices

The P1 scattering matrix data consist of a single P1 matrix for hydrogen, deuterium, oxygen and carbon in that order. The matrices are written to tape one row at a time; thus the P1 scattering matrix file consists of 4N records,

System EOF Mark

Attachment

Jung-Do, Jong Tai Lee, Choong-Sup Gil, Hark Rho Kim, Generation and Benchmarking of a 69-group Corss Section Library for Thermal Reactor Applications. Journal of the Korean Nuclear Society, v.21(4) p. 245-258 (December 1989). (Not Microfiched)

x