

IAEA-NDS-210 27 November 2003

Technical Report on FORMATTING OF CROSS SECTIONS FOR PRODUCTION OF DIAGNOSTIC RADIONUCLIDES IN ENDF-6 FORMAT

prepared by

Daniel Lopez Aldama Centro de Gestion de Informacion y Desarrollo de la Energia Miramar, La Habana, Cuba

Summary documentation

Abstract: This report sets out the procedure undertaken to prepare and verify a set of evaluated nuclear data files in ENDF-6 format from the charged particle cross-section database for medical radioisotope production.

The report is available online on http://www-nds.iaea.org/nds-210.pdf

The data in ENDF-6 format are available on http://www-nds.iaea.org/medical/

Nuclear Data Section		e-mail: services@iaeand.iaea.org
International Atomic Energy	gy Agency	fax: (43-1)26007
P.O. Box 100		cable: INATOM VIENNA
A-1400 Vienna		telex: 1-12645
Austria		telephone: (43-1)2600-21710
	online:	TELNET or FTP: iaeand.iaea.org
	usernames	: IAEANDS for interactive Nuclear Data Information System
		ANONYMOUS for FTP file transfer
		FENDL2 for FTP file transfer of FENDL-2.0 files
		RIPL for FTP file transfer of RIPL
		NDSONL for files saved in "NDIS" Telnet session
	Web:	http://www-nds.iaea.org

Disclaimer

Neither the author nor anybody else makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information disclosed, or represents that its use would not infringe privately owned rights.

The IAEA-NDS would appreciate any comment on this report at: services@iaeand-iaea.org

Vienna, 2003-11-27

TABLE OF CONTENTS

1.	Intro	duction	5
2.	Form	natting of evaluated nuclear data files	5
	2.1	Calculation of reaction Q values and threshold energies	5
	2.2	Masses in neutron mass units (AWR)	5
	2.3	Additional general data	9
	2.4	Evaluated nuclear data file generation	9
		2.4.1 MF=1 general information file	9
		2.4.2 MF=3 cross section file or MF=10 nuclide production	9
		2.4.3 MF=8 decay data file	10
	2.5	Verification of the evaluated nuclear data files	10
3.	Conc	clusions	10
4.	Reco	mmendations	10
5.	Refe	rences	11

1. Introduction

The IAEA Coordinated Research Project (CRP) "Charged particle cross section database for medical radioisotope production: Diagnostic radioisotopes and monitor reactions" was completed in 1999. The results were published as an IAEA-TECDOC [1] and they are also available in tabular and graphical form on the IAEA/NDS web page http://www-nds.iaea.org/medical/. Although this format is sufficient for many users, a more general format as ENDF-6 is strongly recommended for exchanging cross section data and for modern production optimization techniques. Therefore, there was a need to convert the cross section data for medical radioisotope production into ENDF-6 format.

2. Formatting of evaluated nuclear data files

The evaluation methods applied for the reactions of interest are well described in reference [1]. The procedure was divided in three main steps:

- Compilation of experimental data available.
- Nuclear model calculations and experimental data fitting.
- Selection of the recommended values.

A total of 22 monitor reactions, 16 gamma emitter reactions and 10 positron emitter reactions were evaluated in the frame of the CRP (Table 1). To convert the tabular data into ENDF-6 format [2], additional information had to be supplemented from other data sources. It was necessary to supply the reaction Q values, relative mass AWR of the target and the threshold energy E_{thr} of the reaction. Furthermore, the traditional ENDF-6 formatted files parameters such as ZA, MAT, AWI among others, were also defined for each case. A brief description of the main procedure used to generate the evaluated data files is given below.

2.1 Calculation of reaction Q values and threshold energies

Table 2 shows the mass-difference Q values (QM) and threshold energies adopted for each reaction. The values were calculated using the web application QCALC (http://www.nndc.bnl.gov/nndc/qcalc/) from the Brookhaven National Laboratory nuclear data services. Threshold energies for endothermic reactions are calculated by the expression:

$$E_{th} = \frac{m_3 + m_4}{m_3 + m_4 - m_1} |Q|$$

where m_3 and m_1 are the masses of the outgoing and incident particles respectively and m_4 is the mass of the product nuclide. Q represents the mass-difference Q-value (QM).

ENDF-6 format rules state that if the value of Q is not well defined (as in elements or for summation reactions like MT=5), the least negative value of Q should be selected taking into account the different component and possible reactions. For non-threshold reactions the highest positive Q-value was used.

2.2 Masses in neutron mass units (AWR)

Values of AWR were also calculated using the application QCALC based on the recommended masses given in reference [3]. For incident particles the relative mass in neutron units (AWI) was taken from reference [2].

			_			-	
		-	-	_		Energy	Base of
No.	Reaction	Туре	$T_{1/2}$	E_{γ}	I_{γ} or β^+	range	recommended
				[KeV]	[%]	[MeV]	values
1	27Al(p,x)22Na	monitor	2.60y	1274.5	99.94	30 - 100	Spline fit
2	27Al(p,x)24Na	monitor	14.96h	1368.6, 2754.0	100, 99.94	30 -100	Spline fit
3	natTi(p,x)48V	monitor	15.98d	983.5, 1312.0	99.99, 97.49	5 -30	Pade fit
4	natNi(p,x)57Ni	monitor	1.50d	1377.6	77.9	15 -50	Spline fit
5	natCu(p,x)56Co	monitor	77.70d	846.8, 1238.3	99.9, 67.0	50 -100	Spline fit
6	natCu(p,x)62Zn	monitor	9.26h	596.7	25.7	14 - 60	Spline fit
7	natCu(p,x)63Zn	monitor	38.1m	669.8, 962.2	8.4, 6.6	4.5 - 50	Pade fit
8	natCu(p,x)65Zn	monitor	244.1d	1115.5	50.75	2.5 - 100	Pade fit
9	27Al(d,x)22Na	monitor	2.60y	1274.5	99.94	29.5 - 80	Pade fit
10	27Al(d,x)24Na	monitor	14.96h	1368.6, 2754.0	100.0,99.94	15 - 80	Pade fit
11	natTi(d.x)48V	monitor	15.98d	983.5, 1312.0	99.99, 97.49	9 - 50	Pade fit
12	natFe(d.x)56Co	monitor	77.70h	846.8, 1238.3	99.9, 67.0	8 - 80	Spline fit
13	natNi(d.x)61Cu	monitor	3.40h	283.0. 656.0	12.5, 10.66	2.5 - 50	Pade fit
14	27Al(3He.x)22Na	monitor	2.60v	1274.5	99.94	10 - 100	Spline fit
15	27Al(3He.x)24Na	monitor	14.96h	1368.6. 2754.0	100.0.99.94	25 - 100	Spline fit
16	natTi(3He x)48V	monitor	15 98d	983 5 1312 0	99 99 97 49	16 - 100	Spline fit
17	$27 \mathrm{Al}(3 \mathrm{x}) 22 \mathrm{Na}$	monitor	2 60v	1274 5	99.94	29 - 100	Spline fit
18	27Al(a,x)22Na	monitor	14.96h	1368 6 2754 0	100 0 99 94	50 - 100	Pade fit
10	$277 \Pi(a, x) 241 \pi a$ natTi(a x)51Cr	monitor	27 70d	320.1	9.83	5 - 40	Pade fit
20	natCu(a,x) = 56Ga	monitor	9/9h	1039.3	37.9	3 - 4 0 8 - 30	Pade fit
20	natCu(a,x)000a	monitor	3.76d	03.3 18/16	37.0 20.4	15 50	Spline fit
21	$\operatorname{natCu}(a, x) 0/0a$	monitor	3.20u	1115 5	50.75	15 - 50	Dede fit
22	$f_{a}^{T} = f_{a}^{T} = f_{a$	monitor	244.10 2.264	1113.3	27.0.20.4	13 - 30	Pade fit
23	6/ZII(p,II)0/Ga	gamma	5.200 2.26d	95.5, 184.0	37.0, 20.4	2 - 23	Pade III Dada fit
24	$122T_{2}(n,n)$	gamma	5.200 12.21	95.5, 184.0	37.0, 20.4	15 - 50	
25	1231e(p,n)1231	gamma	13.2h	159.0	83.3	4 - 20	ALICE IPPE nor.
26	1241e(p,2n)1231	gamma	13.2h	159.0	83.3	12 - 30	ALICE IPPE nor.
27	1241e(p,n)1241	gamma	4.18d	602.7	61.0	5 - 30	ALICE IPPE nor.
28	82Kr(p,2n)81Rb	gamma	4.58h	190.4	64.3	14.5 - 80	Spline fit
29	natKr(p,2n)81Rb	gamma	4.58h	190.4	64.3	14.5 - 80	Spline fit
30	203Tl(p,3n)201Pb	gamma	9.33h	331.2	79.0	18 - 36	Spline fit
31	203Tl(p,2n)202Pbm	gamma	3.62h	422.2	86.0	9 - 27	Pade fit
32	203Tl(p,4n)200Pb	gamma	21.5h	147.6	37.7	27.5 - 36	Spline fit
33	111Cd(p,n)111In	gamma	2.8d	171.3, 245.4	90.24, 94.0	4 - 30	ALICE IPPE
34	112Cd(p,2n)111In	gamma	2.8d	171.3, 245.4	90.24, 94.0	11.5 - 35	Spline fit
35	127I(p,5n)123Xe	gamma	2.08h	148.9	49.0	16.5 - 40	Spline fit
36	127I(p,3n)125Xe	gamma	16.9h	188.4	54.9	20 - 100	ALICE IPPE
37	124Xe(p,2n)123Cs	gamma	5.87m	97.4	14.5	15.5 - 40	Pade fit
38	124Xe(p,np)123Xe	gamma	2.08h	148.9	49.0	16.5 - 40	Pade fit
39	14N(p,a)11C	positron	20.39m		99.8	4 - 25	Pade fit
40	16O(p,a)13N	positron	9.96m		99.8	6 - 20	Pade fit
41	15N(p,n)15O	positron	2.04m		99.9	1 - 15	Pade fit
42	14N(d.n)15O	positron	2.04m	Two 511 KeV	99.9	4 - 20	Pade fit
43	18O(p.n)18F	positron	109.8m	gamma ravs	97.0	2.5 - 20	Pade fit
44	natNe(d.x)18F	positron	109.8m	formed in the	97.0	1.5 - 21	Spline fit
45	69Ga(p.2n)68Ge	positron	270.8d(68.3m)	annihilation of	(89.0)	13 - 40	Pade fit
46	natGa(p,x)68Ge	positron	270.8d(68.3m)	B ⁺	()	11.5 - 60	Spline fit
47	85Rb(n 4n)82Sr	nositron	2555d(1.3m)	Ч	(95.0)	36.5 - 70	Spline fit
48	natRb(n 4n)82Sr	nositron	25.55d(1.5m)		(25.0)	50.5 10	Spline fit
-10	naux0(p,+11)02.51	Position	25.55u(1.511)				Spine in

Table 1. Charge particle reactions for medical radioisotope production

*The long lived ⁶⁸Ge and ⁸²Sr are produced commonly by spallation. Within parenthesis the data for ⁶⁸Ga(68.3m) & ⁸²Rb(1.3m)

Table 2. Q and	d energy	thresholds	values
----------------	----------	------------	--------

		Selected for QM	QM	Eth	Target	Eels	E_0
No.	Reaction		[MeV]	[MeV]	AWR	[MeV]	[MeV]
1	27Al(p,x)22Na	27Al(p,npa)22Na	-22.5110	23.5920	26.749754	0	25.2000
2	27Al(p,x)24Na	27Al(p,p3He)24Na	-23.7104	24.7501	26.749754	0	27.7820
3	NatTi(p,x)48V	47Ti(p,g)48V	6.8319	0.0000	47.467127	0	4.5000
4	NatNi(p,x)57Ni	58Ni(p,np)57Ni	-12.2190	12.4390	58.189157	0	13.0000
5	NatCu(p,x)56Co	63Cu(p,4na)56Co	-39.0980	39.8150	62.999756	0	45.0000
6	NatCu(p,x)62Zn	63Cu(p,2n)62Zn	-13.2620	13.4820	62.999756	0	14.0000
7	NatCu(p,x)63Zn	63Cu(p,n)63Zn	-4.1492	4.2168	62.999756	0	4.3000
8	NatCu(p,x)65Zn	65(p,n)65Zn	-2.1341	2.1679	62.999756	0	2.2000
9	27Al(d,x)22Na	27Al(d,ta)22Na	-16.2537	17.8922	26.749754	0	19.0000
10	27Al(d,x)24Na	27Al(d,pa)24Na	-5.3574	5.8485	26.749754	0	10.0000
11	NatTi(d,x)48V	47Ti(d,n)48V	4.6073	0.0000	47.467127	0	2.0000
12	NatFe(d,x)56Co	54Fe(d,g)56Co	16.1602	0.0000	55.367067	0	7.8460
13	NatNi(d,x)61Cu	60Ni(d,n)61Cu	2.5759	0.0000	58.189157	0	2.2000
14	27Al(3He,x)22Na	27Al(3He,2a)22Na	-1.9333	2.2407	26.749754	0	8.0000
15	27Al(3He,x)24Na	27Al(3He,6Be)24Na	-12.2220	13.9800	26.749754	0	20.0000
16	NatTi(3He.x)48V	46Ti(3He.p)48V	7.9920	0.0000	47.467127	0	4.5000
17	27Al(a.x)22Na	27Al(a.n2a)22Na	-22.5110	27.5190	26.749754	0	29.0000
18	27Al(a,x)24Na	27Al(a,7Be)24Na	-22.1238	26.5540	26.749754	0	33.0000
19	NatTi (a,x) 51Cr	47Ti(a,g)51Cr	8.9379	0.0000	47.467127	0	5.0000
20	NatCu (a,x) 66Ga	63Cu(a,n)66Ga	-7.5010	7.9860	62.999756	ů 0	8.0000
21	Nat $Cu(a, x)$ 67Ga	63Cu(a,n)60Ga	3 7254	0.0000	62,999756	0	12,7000
22	Nat $Cu(a, x)$ 65Zn	63Cu(a,g)67Su	-10 3792	11 0611	62 999756	0	15,0000
22	677n(n n)67Ga	677n(n n)67Ga	-1 7828	1 8101	66 352194	0	2 0000
$\frac{23}{24}$	687n(p,n)67Ga	687n(p,n)67Ga	-11 9810	12 1642	67 341340	0	13,0000
25	$123T_{e}(n n)123I$	$123T_{e}(n n)123I$	2 0167	2 0332	121 8/8/65	0	3 8000
25	1231C(p,n)1231 124Te(p,2n)1231	1231C(p,n)1231 124Te(p,2n)123I	11 4420	11 5360	121.040403	0	12 0000
20	124Tc(p,21)123T 124Tc(p,21)124T	1241C(p,21)1231 124Te(p,21)124I	3 0/10	3 07/3	122.838434	0	5 8000
21	12410(p,n)1241 82Vr(n, 2n)81Dh	1241C(p,n)1241 82Kr(n, 2n)81Dh	12 0960	14 1620	122.030434 91 200909	0	14 4000
20 20	02KI(p,2II)01KU Not $Kr(p,2p)81Bh$	82Kr(p,2n)81Rb	-13.9600	14.1020	81.209808 82.080141	0	14.4000
29 20	1000000000000000000000000000000000000	02KI(p,2II)01KU	-13.9600	14.1020	05.000141	0	14.3000
3U 21	20511(p,511)201P0	20511(p,511)201P0	-17.4055	0 7250	201.228098	0	18.0000
22	$203 \Pi(p,2n) 202 PDm$	$203 \Pi(p,2n) 202 PDIn$	-8.0810	8.7250	201.228098	2.10985	9.0000
32 22	$203 \Pi(p,4n) 200 Pb$	$203 \Pi(p,4n) 200Pb$	-24.5180	24.0420	201.228098	0	27.5000
33 24	111Cd(p,n)1111n	111Cd(p,n)1111n	-1.0480	1.0030	109.951461	0	3.0000
34 25	112Cd(p,2n)1111n	112Cd(p,2n)1111n	-11.0460	11.14/0	110.941458	0	11.4000
35	12/1(p,5n)123Xe	12/I(p,5n)123Xe	-36./960	37.1000	125.814297	0	37.3000
36	12/I(p,3n)125Xe	12/I(p,3n)125Xe	-18.7230	18.8750	125.814297	0	20.0000
37	124Xe(p,2n)123Cs	124Xe(p,2n)123Cs	-15.4620	15.5900	122.841484	0	16.5000
38	124Xe(p,np)123Xe	124Xe(p,np)123Xe	-10.4700	10.5560	122.841484	0	16.4000
39	14N(p,a)11C	14N(p,a)11C	-2.9231	3.2175	13.882781	0	4.0000
40	16O(p,a)13N	16O(p,a)13N	-5.2184	5.6567	15.857511	0	5.8000
41	15N(p,n)15O	15N(p,n)15O	-3.5363	3.7910	14.871251	0	3.7200
42	14N(d,n)15O	14N(d,n)15O	5.0724	0.0000	13.882781	0	0.6000
43	18O(p,n)18F	18O(p,n)18F	-2.4358	2.5824	17.844539	0	2.5000
44	NatNe(d,x)18F	20Ne(d,a)18F	2.7954	0.0000	20.006690	0	1.5400
45	69Ga(p,2n)68Ge	69Ga(p,2n)68Ge	-11.1980	11.3660	68.333477	0	12.5000
46	NatGa(p,x)68Ge	69Ga(p,2n)68Ge	-11.1980	11.3660	69.124117	0	12.5000
47	85Rb(p,4n)82Sr	85Rb(p,4n)82Sr	-31.1550	31.5430	84.182356	0	34.0000
48	NatRb(p,4n)82Sr	85Rb(p,4n)82Sr	-31.1550	31.5430	84.733554	0	34.0000

	Table 5. Auu			Tormatting	g all eval		clear uat		
	Reaction	NSU	MAT	ΖA	MF	MT	MATP	ZAP	LSF
No.		B			1.0				
1	27Al(p,x)22Na	10010	1325	13027	10	5	1122	11022	1
2	2/Al(p,x)24Na	10010	1325	13027	10	5	1128	11024	2
3	natTi(p,x)48V	10010	2200	22000	10	5	2319	23048	0
4	natNi(p,x)57Ni	10010	2800	28000	10	5	2822	28057	0
5	natCu(p,x)56Co	10010	2900	29000	10	5	2716	27056	I
6	natCu(p,x)62Zn	10010	2900	29000	10	5	3019	30062	2
7	natCu(p,x)63Zn	10010	2900	29000	10	5	3022	30063	3
8	natCu(p,x)65Zn	10010	2900	29000	10	5	3028	30065	4
9	27Al(d,x)22Na	10020	1325	13027	10	5	1122	11022	1
10	27Al(d,x)24Na	10020	1325	13027	10	5	1128	11024	2
11	natTi(d,x)48V	10020	2200	22000	10	5	2319	23048	0
12	natFe(d,x)56Co	10020	2600	26000	10	5	2716	27056	0
13	natNi(d,x)61Cu	10020	2800	28000	10	5	2919	29061	0
14	27Al(3He,x)22Na	20030	1325	13027	10	5	1122	11022	1
15	27Al(3He,x)24Na	20030	1325	13027	10	5	1128	11024	2
16	natTi(3He,x)48V	20030	2200	22000	10	5	2319	23048	0
17	27Al(a,x)22Na	20040	1325	13027	10	5	1122	11022	1
18	27Al(a,x)24Na	20040	1325	13027	10	5	1128	11024	2
19	natTi(a,x)51Cr	20040	2200	22000	10	5	2428	24051	0
20	natCu(a.x)66Ga	20040	2900	29000	10	5	3116	31066	1
21	natCu(a.x)67Ga	20040	2900	29000	10	5	3119	31067	2
22	natCu(a,x)65Zn	20040	2900	29000	10	5	3028	30065	3
23	67Zn(p.n)67Ga	10010	3034	30067	3	4	3119	31067	0
24	68Zn(n 2n)67Ga	10010	3037	30068	3	16	3119	31067	0
25	123Te(n n)123I	10010	5234	52123	3	4	5313	53123	Ő
26	$123 \operatorname{Te}(p,n) 1231$ 124Te(p 2n)123I	10010	5237	52123	3	16	5313	53123	Ő
27	124Te(p,2n)1231	10010	5237	52124	3	4	5316	53125	Ő
28	82 Kr(n 2n) 81 Rh	10010	3637	36082	3	16	3713	37081	0
20	natKr(p,2n)81Rb	10010	3600	360002	3	16	3713	37081	0
30	203Tl(p,2n)201Pb	10010	8125	81203	3	17	8216	82201	0
31	203T1(p,31)20110 203T1(p,2p)202Phm	10010	8125	81203	3	16	8220	82201	1
32	203 T1(p,21)2021 DIII 203T1(p,4p)200Pb	10010	8125	81203	3	37	8220	82202	0
32	$203 \Pi(p,4\Pi) 200\Gamma 0$ 111Cd(n n)111In	10010	4840	49111	3	1	4010	40111	0
33	111Cu(p,n)1111n 112Cd(p,2p)1111n	10010	4040	40111	3	4 16	4919	49111	0
25	112Cu(p,2n)111m $127I(p,5n)122V_{0}$	10010	4043	40112 52127	2	10	4919 5400	49111 54102	0
33	$12/1(p, 5\pi)125Xe$	10010	5525	52127	2	4/	5422	54125	0
30	12/1(p,5n)125Xe	10010	5525 5425	55127	3	1/	5428	54125	0
3/	124Xe(p,2n)123Cs	10010	5425	54124	3	10	5595	55125	0
38	124Xe(p,np)123Xe	10010	5425	54124	3	28	5422	54125	0
39	14N(p,a)11C	10010	725	7014	3	107	622	6011	0
40	16O(p,a)13N	10010	825	8016	3	107	722	7013	0
41	15N(p,n)15O	10010	728	7015	3	4	822	8015	0
42	14N(d,n)15O	10020	725	7014	3	4	822	8015	0
43	18O(p,n)18F	10010	831	8018	3	4	922	9018	0
44	NatNe(d,x)18F	10020	1000	10000	3	5	922	9018	0
45	69Ga(p,2n)68Ge	10010	3125	31069	3	16	3219	32068	0
46	natGa(p,x)68Ge	10010	3100	31000	3	5	3219	32068	0
47	85Rb(p,4n)82Sr	10010	3725	37085	3	37	3819	38082	0
48	natRb(p,4n)82Sr	10010	3700	37000	3	37	3819	38082	0

Table 3. Additional data for formatting an evaluated nuclear data file

2.3 Additional general data

Material numbers (MAT), ZA numbers for target nuclides as well as for product nuclides (MATP, ZAP) were defined following the ENDF-6 conventions. Similarly the reaction types were assigned according to the ENDF-6 formats rules. Table 3 shows the selected values for these parameters.

2.4 Evaluated nuclear data file generation

An evaluated nuclear data file was generated for each material and incident particle. For all materials the general information file MF=1 was always prepared from the information available from the IAEA-TECDOC [1] and the corresponding web page.

The production cross sections of the monitor reactions were included on the ENDF-6 file 10 (MF=10). Some targets from this group of reactions have several final products for the summation reaction type MT=5. The structure of MF=10 allows a correct description of these cases. For the gamma and positron emitter groups the cross section file MF=3 was used. In all cases the radioactive decay data file MF=8 is given to specify the end products of the reaction. In Table 3 information concerning the files (MF) and sections (MT) used to define the cross section data is presented.

A FORTRAN-77 code (w2e6.f) was written to perform the conversion into the ENDF-6 format from text- formatted input. The main procedures built in the code are briefly described below. Definition of the ENDF-6 format parameters is given in reference [2].

2.4.1 MF=1 general information file

Section MT=451 is given. The resonance indicator LRP was set equal to -1, no resonance file (MF=2). The fission indicator LFI was set to zero. It means that the material does not fission. NLIB=51, NMOD=1, LDRV=0 and NFOR=6 were used for all materials. The sub-library number NSUB was selected according to the incident particle. Table 3 also shows the values assigned to NSUB. The parameters ELIS, STA, LIS and LISO were properly selected. The reaction directory is also included. A typical MF=1 is given in Annex 1.

2.4.2 MF=3 cross section file or MF=10 nuclide production

As mentioned above for all gamma and positron emitters the cross sections are given in file MF=3.

The reaction Q-value (QI) was given equal to the mass-difference Q-value (QM) for reactions with no intermediate states in the residual nucleus and without complex breakup (LR=0). For the reaction 203 Tl(p,2n) 202m Pb the value of QI was calculated as QM for the ground state of the residual nucleus minus the energy of the excited level in this system. The energy of the excited state was calculated using the IAEA/NDS Nuclear Data Services, particularly the web application NUDAT. Table 2 presents the values of the excitation energy ELFS.

Cross sections are given from the threshold energy to an upper common energy limit. In case of exothermic reaction the lower limit is set to 1.0e-5 eV. Table 2 includes the value of $E_{0,}$ which is the lower energy given by evaluators. Below this value towards the threshold the cross section was extrapolated using the ENDF-6 interpolation law 6 for charged particles [2]. This law is based on the limiting forms of the Coulomb penetrabilities for exothermic reactions at low energy and for endothermic reactions near the threshold.

A cross section of 0.0 is specified at the threshold energy, and also at the pseudo-threshold energy above which the cross section becomes significant. This point is double valued. Below pseudo-threshold energy the constant (INT=1) interpolation law is applied. Between the effective threshold and the next specified cross-section at E_0 the INT=6 interpolation law is used and few points (5-10) are introduced to give an idea of the cross section shape.

The evaluators gave a set of recommended values according to the method presented in the last column of Table 1. Three new equidistant points were introduced in each original energy subinterval keeping the intention of evaluators. A cubic spline fit based on the recommended values was applied to obtain these new points, except in the first subinterval where the interpolation law INT=6 was used. For all other points up to the upper energy limit the interpolation law INT=2 (lin-lin) was assumed.

There are some reactions of the same material with an apparent upper energy limit lower than the upper limit for the material. Such cross sections were double valued at the highest energy for which the cross section is non-zero. The value of the cross section at the discontinuity was set to zero, and was followed by another zero value at the upper energy limit. Interpolation law INT=1 was set in this extra energy range.

2.4.3 MF=8 decay data file

Information about the reaction products is given following ENDF-6 rules. For all cases the NO parameter was set equal to one, implying that decay data for the product nucleus are given elsewhere.

2.5. Verification of the evaluated nuclear data files

The program w2e6 was run over all materials. A tape file for each material and for each type of incident particle was generated. Different plots were prepared using the program PLOTTAB [4]. The processing codes PREPRO-2002 [5] were not extensively used due to limitations of treatment of the interpolation law INT=6 for endothermic reactions. Annex 2 shows a set of such a plots.

3. Conclusions

A set of evaluated nuclear data files in ENDF-6 format from the charged particle cross-section database for medical radioisotope production was prepared and verified.

The data is available from the IAEA/NDS in ENDF-6 format for exchange cross section data.

4. Recommendations

Continue with the data verification and validation program.

5. References

- [1] IAEA-TECDOC-1211, "Charged particle cross section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions", IAEA, May 2001.
- [2] IAEA-NDS-76, "ENDF-6 Formats Manual", edited by V. McLane, April 2001
- [3] G.Audi, A.H.Wapstra. "The 1995 Update to the Atomic Mass Evaluation." Nuclear Physics **A595**, 409-480 (1995).
- [4] D. E. Cullen, PLOTTAB, IAEA-NDS-39 Rev.9 The 1996 ENDF Pre-Processing Codes, IAEA, Vienna
- [5] D. E. Cullen, PREPRO 2002: 2002 ENDF/B Pre-Processing Codes, 2002.

ANNEX-1: Sample MF=1 data file for ²⁷Al

IAEA-NDS-CRP LIBRARY FOR MEDICAL RADIOISOTOPE PRODUCTION	900	0 0	0
1.302700+4 2.674975+1 -1 0 51	11325	1451	1
0.000000+0 0.000000+0 0 0 0	61325	1451	2
9.986235-1 1.000000+8 1 0 10010	11325	1451	3
0.000000+0 0.000000+0 0 0 161	31325	1451	4
13-AL- 27 IAEA-CRP EVAL-DEC99 ELEVEN EXPERTS FROM THE IAEA-CRF	1325	1451	5
IAEA-NDS-CPXS-LIB DIST-DEC03 REV1-DEC03	1325	1451	6
IAEA-NDS-CRP-LIB MATERIAL 1325 REVISION 1	1325	1451	7
INCIDENT-PROTON DATA	1325	1451	8
ENDF-6 FORMAT	1325	1451	9
	1325	1451	10
***************************************	1325	1451	11
FILE DESCRIPTION	1325	1451	12
12 M. OF BUILDING FOR MEDICAL PARTATOMORE PRODUCED	1325	1451	⊥3 14
13-AL- 27 EVALUATION FOR MEDICAL RADIOISOTOPE PRODUCTION	1325 1325	1451	15
	1325	1451	15
EVALUATED REACTIONS.	1325	1451	17
$27\Delta 1(n x) 22Na T1/2=2.602y G=1275.5KeV(99.94%)$	1325	1451	18
MT = 5 MF = 10 MF = 8	1325	1451	19
	1325	1451	20
27Al(p.x)24Na T1/2=14.96h G=1368.6KeV(100%).2754.0KeV(99.94%)	1325	1451	21
MT= 5 MF=10 MF= 8	1325	1451	22
	1325	1451	23
	1325	1451	24
THE EVALUATION IS BASED ON THE WORK DEVELOPED IN THE FRAME	1325	1451	25
OF THE IAEA CO-ORDINATED RESEARCH PROJECT: ON DEVELOPMENT OF	1325	1451	26
REFERENCE CHARGED PARTICLE CROSS-SECTION DATABASE FOR	1325	1451	27
MEDICAL RADIOISOPE PRODUCTION, 1995-1999.	1325	1451	28
	1325	1451	29
FOR COMPLETE DESCRIPTION OF THE EVALUATED METHODS SEE	1325	1451	30
IAEA-TEC-DOC-1211, CHARGED PARTICLE CROSS-SECTION FOR	1325	1451	31
MEDICAL RADIOISOTOPE PRODUCTION: DIAGNOSTIC RADIOISOTOPES AND	1325	1451	32
MONITOR REACTIONS, IAEA, VIENNA, MAY 2001, (285 PP.), BY	1325	1451	33
S. M. QAIM (FZ JULICH, GERMANY)	1325	1451	34
T. F. TARKANYI (ATOMKI, HUNGARY)	1325	1451	35
R. GUL (PINST, PARISTAN)	1325 1325	1451	30
A. HERMANNE (VOB, BELGIOM) M. C. MUSTAFA (LINI, USA)	1325	1451	38
F M NORTIER (NAC SOUTH AFRICA)	1325	1451	30
B. SCHOLTEN (FZ JULICH, GERMANY)	1325	1451	40
Y. SHUBIN (FEI, RUSSIAN FEDERATION)	1325	1451	41
S. TAKACS (ATOMKI, HUNGARY)	1325	1451	42
Y. ZHUANG (CIAE, CHINA)	1325	1451	43
P. OBLOZINSKY (IAEA)	1325	1451	44
	1325	1451	45
CONVERSION INTO ENDF-6 FORMAT BY	1325	1451	46
D. L. ALDAMA (IAEA/NDS CONSULTANT), NOV. 2003	1325	1451	47
	1325	1451	48
THE CROSS SECTION VALUES WERE TAKEN FROM THE RECOMMENDED ONES	1325	1451	49
GIVEN IN THE IAEA-TECDOC-1211. TOWARDS LOWER ENERGIES THE	1325	1451	50
ORIGINAL EVALUATION WAS COMPLEMENTED BY EXTRAPOLATION	1325	1451	51
USING ENDF-6 INTERPOLATION LOW 6 FOR CHARGED PARTICLES	1325	1451	52
	1325	1451	53
REFERENCES	1225	1451	54
(λ) References for 27λ $(n x)$ $22N_2$	1225	1451	55
(A) References for Z/AI(p,X)ZZNa	1225	1/51	50
1. Bodemann R., Busemann H. Gloris M. Leva T. Michel P.	1325	1451	57
Schiekel T., Herpers U., Holmgvist B., Condé H., Malmborg P	1325	1451	59
Dittrich-Hannen B. and Suter M.: New measurements of the monitor	1325	1451	60
reactions $27(Al(p,x)7Be, 27Al(p,3p3n)22Na, 27Al(p,3pn)24Na and$	1325	1451	61
65Cu(p,n)65Zn. In Progress report on nuclear data research in	1325	1451	62
the Federal republic of Germany, ed. Qaim S.M., see Report	1325	1451	63
NEA/NSC/DOC (95)10 and INDC (Ger)-040 (1995) p.29	1325	1451	64
-	1325	1451	65
2. Cumming J.B.: Absolute cross section for the 12C(p,pn)11C	1325	1451	66

reaction at 50 MeV. Nucl. Phys. 49 (1963) 417 Exfor: B0095	1325 1325	1451 1451	67 68
	1325	1451	69
3. Furukawa M., Kume S. and Ogawa S.K.: Excitation functions for	1325	1451	70
the formation of 7Be and 22Na in proton induced reactions on	1325	1451	71
27Al. Nucl. Phys. 69 (1965) 362	1325	1451	72
Exfor: P0016	1325	1451	73
	1325	1451	74
4. Heydegger H.R., Turkevich A.L., Van Ginneken A. and Walpole,	1325	1451	75
P.H.: Production of 7Be, 22Na and 28Mg from Mg, Al and SiO2 by	1325	1451	76
protons between 82 and 800 MeV. Phys. Rev. C 14 (1976) 1506	1325	1451	77
F Kenteling D.C. and Construct N.D. ; Ensure dependence of 20No	1325	1451	78
5. Korteling R.G., and Carello A.A., Energy dependence of 22Na	1325	1451	/9
Thus Per C 1 (1970) 1960	1325	1451	81
Exfor: $C0253$	1325	1451	82
	1325	1451	83
6. Lagunas-Solar M.C., Carvacho O.F. and Cima R.R.: Cyclotron	1325	1451	84
production of PET radionucleides: 18F (109.77min; b+ 96.9%; EC	1325	1451	85
3.1%) from high-energy protons on metallic aluminium targets.	1325	1451	86
Appl. Radiat. Isot. 39 (1988) 41	1325	1451	87
Exfor: A0445	1325	1451	88
	1325	1451	89
7. Michel R., Brinkman G. and Herr W.: Integral excitation	1325	1451	90
functions for p-induced reactions Report NEANDC (E) -202 U	1325	1451	91
vol.v, also Report INDC (Ger)-21/L + special (1979) 68	1325	1451	92
Extor: AU151	1325	1451	93
0 Dulfou D : Determination of charlints muchustion more	1325	1451	94
8. Puller P., Determination of absolute production cross	1325	1451	95
72 MeV and at 1820 MeV. Thesis (1979) unpublished	1325	1451	90
Exfor: D0053	1325	1451	98
	1325	1451	99
9. Steyn G.F., Mills S.J., Nortier F.M., Simpson B.R.S. and	1325	1451	100
Meyer B.R.: Production of 52Fe via proton-induced reaction on	1325	1451	101
manganese and nickel. Appl. Radiat. Isot. 41 (1990) 315	1325	1451	102
Exfor: A0497	1325	1451	103
	1325	1451	104
(B) References for 27Al(p,x)24Na	1325	1451	105
	1325	1451	106
1. Cumming J.B.: Monitor reactions for high energy proton beams.	1325	1451	107
Annual Review Nuclear and Particle Science 13 (1963) 261.	1325	1451	108
EXION: B0022	1325	1451	1109
2 Couvin H Lefort M and Terrage V : Emmiggion dibelions dans	1325	1451	111
les reactions de spallation Nuclear Diverse 39 (1962) 447	1325	1451	112
ieb reactions ac sparracton. Nacical inysies 55 (1902) iii	1325	1451	113
3. Gilbert R.S.: Private communications in Hicks H.G., Stevenson	1325	1451	114
P.C. and Nervik W.E.: Reaction Al27(p, 3pn)Na24., Physical Review	1325	1451	115
102 (1956) 1390. Data from: J. Tobailem, CH. de Lassus	1325	1451	116
St-Genies, L. Leveque: Sections efficaces des reactions	1325	1451	117
nucleaires induites par protons, deutons, particules alpha. I	1325	1451	118
reactions nucleaires moniteurs. Note CEA-N-1-1466(1), CEA,	1325	1451	119
France, 1971.	1325	1451	120
	1325	1451	121
4. Grütter A.: Excitation functions for radioactive isotopes	1325	1451	122
produced by proton bombardment of Cu and Al in the energy range	1325	1451	123
UL IU LU /U MEV. NUCLEAL PHYSICS A303 (1982) 98 Evfor: A0178	⊥325 120⊑	⊥45⊥ 1/⊑1	⊥∠4 1 2 ⊑
EVIOL VOILO	1325	1451	⊥⊿⊃ 126
5. Hogan J.J. and Gadioli E.: Production of 24Na from 27Al by	1325	1451	127
(35-100) MeV protons. Nuovo Cimento A3 (1978) 341	1325	1451	128
Exfor: B0131	1325	1451	129
	1325	1451	130
6. Lagunas-Solar M.C., Carvacho O.F. and Cima R.R.: Cyclotron	1325	1451	131
production of PET radionuclides:18F (109.77 min, b+ 96.9%, EC	1325	1451	132
3.1 %) from high-energy protons on metallic aluminum targets.	1325	1451	133
Applied Radiation Isotopes 39 (1988) 41	1325	1451	134
Exfor: A0445	1325	1451	135
	1325	1451	136

7. Michel R., I	Dragovitsch P.,	Englert	P., Pfeiff	er F.,	Stück R.,	1325	1451	. 137
Theis S., Beger	nann F., Weber H	H., Signe	r P., Wiel	er R.,	Filges D.	1325	1451	. 138
and Cloth P.: (On depth depende	ence of s	pallation	reactio	ons in a	1325	1451	. 139
spherical thick	<pre>< diorite target</pre>	t homogen	iously irr	adiated	d by 600	1325	1451	. 140
MeV protons. S:	imulation of pro	oduction	of cosmoge	nic nuo	clides in	1325	1451	. 141
small meteorite	es. Nuclear Inst	truments 1	Methods Bl	6 (198)	6) 61	1325	1451	. 142
Exfor: A0344						1325	1451	. 143
						1325	1451	. 144
8. Miyano K.: 7	The 7Be, 22Na ar	nd 24Na p	roduction	cross :	sections	1325	1451	. 145
with 22- to 55	MeV proton on 2	27Al. Jou	rnal Physi	cal So	ciety	1325	1451	. 146
Japan 34 (1973)) 853					1325	1451	. 147
						1325	1451	. 148
9. Pulfer P: De	etermination of	absolute	productio	n cross	s sections	1325	1451	. 149
for proton indu	aced reactions i	in the en	ergy range	15 to	72 MeV	1325	1451	. 150
and at 1820 MeV	7. Thesis (1979)), Univer	sitat Bern	, unpul	blished	1325	1451	. 151
Exfor: D0053						1325	1451	. 152
						1325	1451	. 153
10. Williams I	.R. and Fulmer (C.B.: Exc	itation fu	nction	s for	1325	1451	. 154
radioactive is	otopes produced	by proto	ns below 6	0 MeV :	in Al, Fe,	1325	1451	. 155
and Cu. Physica	al Review 162 (1	1967) 105	5			1325	1451	. 156
Exfor: B0073						1325	1451	. 157
						1325	1451	. 158
11: Yule H. and	1 Turkevich A.:	Radioche	mical stud	ies of	the	1325	1451	. 159
(p,pn) reaction	n in complex nuc	clei in t	he 80-450-	MeV rai	nge.	1325	1451	. 160
Physical Review	v 118 (1960) 159	91				1325	1451	. 161
Exfor: P0049						1325	1451	. 162
						1325	1451	. 163
***********	* * * * * * * * * * * * * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * *	* * * * * * * *	1325	1451	. 164
						1325	1451	. 165
		1	451	168	8	11325	1451	. 166
		8	5		3	11325	1451	. 167
		10	5	23	5	11325	1451	168
						0	0 0	999999
						0	0 0) 0

