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1. Introduction 

The objective of nuclear data evaluation is to produce reliable estimates and associated 

uncertainty information for fundamental nuclear quantities, such as cross sections and 

angular distributions. These data, compiled in nuclear databases, are essential for 

various fields within nuclear science and technology, such as nuclear energy, nuclear 

engineering, and nuclear medicine.  

The nuclear data evaluation process comprises the collection of suitable experimental 

data, an assessment of their uncertainties, and the fusion of their information using a 

statistical method in order to obtain reliable estimates and associated uncertainties. 

Depending on the type of quantity and goal of the evaluation, sometimes predictions of 

nuclear physics models are also incorporated in this process. 

Several evaluation codes exist that implement the statistical estimation procedure, such 

as GANDR [1] and GMAP [2]. These programs employ specific assumptions, such as 

basing the entire procedure on the multivariate normal distribution for modelling 

uncertainties. It is very difficult to generalize these codes to work with other probability 

distributions due to their complex code base and the need to implement support for 

these distributions from scratch. General frameworks for statistical modelling, such as 

STAN [3], require the formulation of the probabilistic assumptions in a programming 

language specific to these frameworks, posing an obstacle to converting the available 

nuclear data evaluation programs into this language. For these reasons, it is difficult to 

perform nuclear data evaluation with probability distributions different from the 

multivariate normal distribution and to include more fine-grained assumptions 

accurately reflecting the knowledge of evaluators. 

TensorFlow[4] is a framework for machine learning usually employed for the creation 

of artificial neural networks and the training of their weights. A couple of years ago, 

Google released an extension to TensorFlow called TensorFlow-Probability [5]. This 

extension framework comes with support for various probability distributions whose 

parameters can be inferred by leveraging the powerful fitting algorithms provided by 

TensorFlow. Furthermore, TensorFlow does not come with its own programming 

language but rather provides functions that can be integrated into Python scripts. 

Therefore, TensorFlow-Probability may be a promising and flexible framework for 

performing nuclear data evaluations with probabilistic assumptions, that precisely 

reflect assumptions taken by an evaluator. 

2. Purpose of this internship  

The objective of this internship is to develop a basic understanding of the capabilities 

provided by TensorFlow and TensorFlow-Probability and to employ these packages in 

simple toy evaluation scenarios to learn more about their suitability for nuclear data 

evaluation. 
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3. Mathematical background and TensorFlow basics 

Nuclear data evaluation is usually based on the assumption that the knowledge about 

nuclear quantities, such as cross sections, can be modelled by a multivariate normal 

distribution. This assumption was also taken for all the studies of this internship 

because the interface of Tensorflow-Probability seems to make it easy to switch to 

other distributions. The focus was therefore to recapitulate the common assumptions 

for nuclear data evaluation and on that basis develop Python scripts translating these 

assumptions into Tensorflow/Probability. The next section is concerned with a one-

dimensional normal distribution to establish basic concepts. Afterwards, the 

discussion is extended to the multivariate normal distribution. 

 

3.1. Normal distribution 
A normal distribution is a probability distribution that is symmetric and bell-shaped. It 

is characterized by its probability density function (PDF) which describes the likelihood 

of observing a particular value. The two parameters characterizing a normal distribution 

are the mean value “𝜇” (representing the center of the bell-shaped form) and the 

standard deviation “ 𝜎” (defining its width). The normal PDF has the following 

functional form: 

 

𝑁(𝑥, 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)

2

 

Given that we know the mean value and the standard deviation, we can compute the 

likelihood of any possible observation “𝑥”. 

 

3.1.1. A single normal distribution 
At its core, nuclear data evaluation deals with the determination of best estimates and 

associated uncertainty information. For a one-dimensional normal distribution, these 

quantities are the mean value and the standard deviation. 

As a starting point, we assume that we have a single observation represented by the 

value of  𝑥 = 3 and that we also know the uncertainty (=standard deviation) 𝑑 = 1 but 

we don’t know the mean value 𝜇. Therefore, we have 𝑁(𝑥, 𝜇, 𝑑)  =  𝑁(3, 𝜇, 1), which 

is now a function of 𝜇. This very simple scenario captures the essence of the estimation 

problem encountered in nuclear data evaluation. 

One wide-spread approach for finding unknown parameter values of a distribution is 

the Maximum Likelihood (ML) principle, which prescribes that the value of the 

unknown parameter should be selected so that the observed data becomes as likely as 

possible according to the PDF. Differently stated, we need to select the values of the 

unknown parameters that maximize the value of the PDF. 

 

In the current simple scenario, we can solve this maximization problem analytically. 

Following, we describe the mathematical procedure to find the optimal value of 𝜇 so 

that we can compare it afterwards with the numerical solution obtained with the help 

of TensorFlow Probability. 

First, we insert the specific values of 𝑥 and 𝑑 value into the normal PDF: 
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𝑓(𝜇) = 𝑁(3, 𝜇, 1)  =
1

√2𝜋
𝑒−

1
2

(3−𝜇)2

 

 

Instead of working directly with this PDF, we can use its logarithm, which will not 

change the location of the maximum but simplify the mathematical operations to find 

it. Working with logarithmized PDFs also has a numerical advantage in computer 

programs because it protects against numerical underflow (exceeding the 

representational capabilities of floating point data types). After the application of the 

logarithm, we obtain the following functional form: 

log(𝑁(3, 𝜇, 1) ) = −
1

2
{(3 − 𝜇)2} −

1

2
log(2𝜋) 

= −
1

2
(𝜇2 − 6𝜇 + 9) −

1

2
log(2𝜋) 

 

To find the maximum of the logarithmized PDF with respect to 𝜇, we need to 

compute the first derivate and the value of  𝜇 where the first derivative becomes zero: 

𝑑

𝑑𝜇
log(𝑁(3, 𝜇, 1) ) = −

1

2
(2𝜇 − 6) = 0 

∴ 𝜇 = 3 

 

According to the ML principle, 𝜇 = 3 is the best value, which is not surprising given 

that the assumed observed value is 𝑥 = 3. 

 

We can use this analytical solution as a benchmark to verify that the numerical 

solution with TensorFlow yields the same result. In contrast to the analytical 

approach, we need to define a starting value for the unknown variable 𝜇. The 

optimization procedure implemented with TensorFlow begins at this starting value 

and then uses the first derivative to make informed steps toward the maximum of the 

PDF. The iterative procedure is stopped once the change of 𝜇 from one iteration to the 

next falls below a numerical threshold or the derivative is sufficiently close to zero. 

The iterative optimization process is visualized in Fig. I. 

 
Figure I: Optimization of 𝜇 

 

We employed the “tfp.optimizer.bfgs_minimize” function for the numerical 

optimization. 

Because we want to find a maximum, but this TensorFlow function can only identify 

a minimum we need to apply a mathematical workaround: We negated both the 
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normal PDF and its derivative function so that the maximization problem is converted 

to a minimization problem. This mathematical transformation is visualized in the 

following two figures. 

 
Figure II: Conversion of a maximization problem to a minimization problem by using 

the negated function. 

 

The complete TensorFlow program implementing the optimization procedure is shown 

below. We set 𝜇 = 4 as a start value. One powerful feature of TensorFlow is automatic 

differentiation. In contrast to the analytic approach explained above, we don’t need to 

find the functional form of the derivative ourselves. This can be automatically 

accomplished by TensorFlow based on the PDF provided. Whereas it isn’t a problem 

to find the form of the derivative analytically in our current simple scenario, it can 

become very difficult in more complicated cases with more complex distributions, such 

as the multivariate normal distribution discussed later in this report. 

The part of the TensorFlow program that is concerned with the computation of the 

derivative is enclosed in the "tf.GradientTape" block. This tf.GradientTape construct is 

a context manager that plays a crucial role in automatic differentiation as it keeps track 

of intermediate results during the so-called backward pass through the computational 

graph. As we can see here, automatic differentiation is not only pertinent to find the 

weights of artificial neural networks with billions of weights but also in statistical 

inference with only a few unknown parameters. 

import tensorflow as tf 
import tensorflow_probability as tfp  
import tensorflow.math as tfm 
import math as m 
 
def tfconst(value): 
    return tf.constant(value, dtype=tf.float64) 
 
def tfvar(value): 
    return tf.Variable(value, dtype=tf.float64) 
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def f(x, mu, d): 
    pi = tfconst(m.pi) 
    y = 1. / tfm.square(2. * pi* d**2.) * tfm.exp(-0.5 * ((x - mu)/d)**2.) 
    yy =tfm.log(y) 
    return tf.squeeze(yy) 
 
x = tfconst(3.) 
d = tfconst(1.) 
mu = tfvar(0.) 
 
with tf.GradientTape() as tape: 
    tape.watch(mu) 
    y = f(x,mu,d) 
g_mu = tape.gradient(y, mu) 
 
def gradient(x, mu, d): 
    with tf.GradientTape() as tape: 
        tape.watch(mu) 
        z= f(x,mu,d)    
    g = tape.gradient(z, mu) 
    return g 
 
def value_and_gradients_function(mu): 
    return (-f(x, mu, d), -gradient(x, mu, d)) 
 
start_mu = tfconst([4.]) 
 
optres = tfp.optimizer.bfgs_minimize( 
    value_and_gradients_function, 
    start_mu 
) 
print(optres) 

 

The output of the TensorFlow program is provided below. The “position” variable 

indicates the solution found for the value of 𝜇 = 3, consistent with the solution of the 

analytical approach. As can be seen, the output also contains detailed information about 

several other aspects of the optimization process. Notably, the variable “converged” 

(here True) indicates whether the function managed to locate the minimum. The 

variable “objective_value” contains the value of the function corresponding to the value 

for 𝜇, which is in our case the negated value of the logarithmized normal PDF. 

Furthermore, “objective_gradient” contains the value of the derivative, which is zero, 

as expected at the maximum of the function. 

BfgsOptimizerResults(converged=<tf.Tensor: shape=(), dtype=bool, numpy=True>, 

failed=<tf.Tensor: shape=(), dtype=bool, numpy=False>, num_iterations=<tf.Tensor: 

shape=(), dtype=int32, numpy=1>, num_objective_evaluations=<tf.Tensor: shape=(), 

dtype=int32, numpy=3>, position=<tf.Tensor: shape=(1,), dtype=float64, 

numpy=array([3.])>, objective_value=<tf.Tensor: shape=(), dtype=float64, 

numpy=3.675754132818691>, objective_gradient=<tf.Tensor: shape=(1,), dtype=float64, 
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numpy=array([-0.])>, inverse_hessian_estimate=<tf.Tensor: shape=(1, 1), dtype=float64, 

numpy=array([[1.]])>) 

 

3.1.2. Estimation of 𝜇 based on two observations 
We want to generalize the toy scenario to the case of two observations, to get one step 

closer to the case of a full nuclear data evaluation with potentially thousands of 

experimental data points. Let’s assume that the two observations are given by the values 

5 and 10. They are both described by one-dimensional normal distributions, 𝑁(5, 𝜇, 1) 

and 𝑁(10, 𝜇, 1). Assuming these two observations to be independent, the combined 

PDF is given by the product of the one-dimensional PDFs:   

  

𝑓(𝜇) = 𝑁(5, 𝜇, 1) × 𝑁(10, 𝜇, 1)  

=
1

√2𝜋
𝑒−

1
2

(5−𝜇)2

×
1

√2𝜋
𝑒−

1
2

(10−𝜇)2

 

=
1

2𝜋
𝑒−

1
2

{(5−𝜇)2+(10−𝜇)2} 

 

We want to find the value of 𝜇 analytically for comparison with the numerical 

optimization using TensorFlow. Analogous to the case of a single observation, we 

first take the logarithm to simplify the problem: 

log(𝑁(5, 𝜇, 1) × 𝑁(10, 𝜇, 1)) = −
1

2
{(5 − 𝜇)2 + (10 − 𝜇)2} − log(2𝜋) 

= −
1

2
(2𝜇2 − 30𝜇 + 125) − log(2𝜋) 

 

Computing the derivative, setting it to zero and solving the resulting equation, we 

obtain  
𝑑

𝑑𝜇
log(𝑁(5, 𝜇, 1) × 𝑁(10, 𝜇, 1)) = −

1

2
(4𝜇 − 30) = 0 

∴ 𝜇 = 7.5 

 

Please note that this result is equal the arithmetic average, 5 + 10 / 2. Therefore, we 

demonstrated that the Maximum Likelihood solution for two observations with the 

same standard deviation is given by a simple arithmetic average. It is not proven in this 

report, but this statement remains true for an arbitrarily large number of observations. 

 

We adjusted the Python script for the case of one observation included in the previous 

section to the case of two observations. The modifications are performed in the 

“value_and_gradients” as well as in the “gradient” function by including the 

multiplication of two one-dimensional normal PDFs. As for the case of a single 

observation, we used the tfp.optimizer.bfgs_minimize function with the same 

mathematical trick to do the maximizaton. We adopted 60 as starting values for 𝜇. 

import tensorflow as tf 
import tensorflow_probability as tfp 
import tensorflow.math as tfm 
import math as m 
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def f(x, mu, d): 
    pi = tf.constant(m.pi,dtype=tf.float64) 
    y = - tfm.log(tfm.square(2.*pi)) - tfm.log(d) - 0.5*((x - mu)/d)**2. 
    return tf.squeeze(y) 
 
def gradient(x, mu, d): 
    with tf.GradientTape() as tape: 
        tape.watch(mu) 
        z = - f(x[0],mu,d[0]) * f(x[1],mu,d[1])  
    g = tape.gradient(z, mu) 
    return g 
 
def value_and_gradients_function(mu): 
    x = tf.constant([5.,10.], dtype=tf.float64) 
    d = tf.constant([1.,1.], dtype=tf.float64) 
    z = - f(x[0],mu,d[0]) * f(x[1],mu,d[1])  
    return -z, -gradient(x, mu, d) 
 
start_mu = tf.constant([60.], dtype=tf.float64) 
 
optres = tfp.optimizer.bfgs_minimize( 
    value_and_gradients_function, 
    start_mu 
) 
print(optres) 

 

The output of this program is included below. The result stored in the “position” 

variable reproduces the analytical solution. 

BfgsOptimizerResults(converged=<tf.Tensor: shape=(), dtype=bool, numpy=True>, 
failed=<tf.Tensor: shape=(), dtype=bool, numpy=False>, num_iterations=<tf.Tensor: 
shape=(), dtype=int32, numpy=6>, num_objective_evaluations=<tf.Tensor: shape=(), 
dtype=int32, numpy=22>, position=<tf.Tensor: shape=(1,), dtype=float64, 
numpy=array([7.5])>, objective_value=<tf.Tensor: shape=(), dtype=float64, 
numpy=46.25025677505052>, objective_gradient=<tf.Tensor: shape=(1,), dtype=float64, 
numpy=array([-0.])>, inverse_hessian_estimate=<tf.Tensor: shape=(1, 1), dtype=float64, 
numpy=array([[0.90750628]])>) 

 

3.1.3. Leveraging TensorFlow Probability’s support for probability distributions 
The previous sections demonstrated how probability distributions can be implemented 

from scratch using basic arithmetic operations and elementary functions, such as the 

exponential function. However, many commonly probability distributions are already 

implemented in TensorFlow-Probability and we can make use of them.   

 

In particular, the one-dimensional normal distributions is available as 

tfp.distributions.Normal and can be instantiated with the following parameters: 

tfp.distributions.Normal( 

    loc, 

    scale, 

    validate_args=False, 

    allow_nan_stats=True, 
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    name='Normal' 

) 

  

The parameter “loc” defines the mean value and the parameter “scale” the standard 

deviation of the normal distribution. The other parameters have default values and we 

can keep them. 

 

We consider again the case of two observations with values 5 and 10, as in the previous 

section, and modify the Python script to make use of the tfd.Normal class provided by 

TensorFlow Probability: 

import tensorflow as tf 
import tensorflow_probability as tfp 
tfd = tfp.distributions 
 
def f(x, mu, d): 
    dist = tfd.Normal(x, d) 
    y = dist.prob(mu) 
    return y 
 
def gradient(x, mu, d): 
    with tf.GradientTape() as tape: 
        tape.watch(mu) 
        z = - f(x[0],mu,d[0]) * f(x[1],mu,d[1])  
    g = tape.gradient(z, mu) 
    return g 
 
def value_and_gradients_function(mu): 
    x = tf.constant([5.,10.], dtype=tf.float64) 
    d = tf.constant([1.,1.], dtype=tf.float64) 
    z = - f(x[0],mu,d[0]) * f(x[1],mu,d[1])  
    return -z, -gradient(x, mu, d) 
 
start_mu = tf.constant([60.], dtype=tf.float64)  
 
optres = tfp.optimizer.bfgs_minimize( 
    value_and_gradients_function, 
    start_mu 
) 
print(optres) 

 

We obtain the same output as in 3.1.2, serving as additional validation that we’ve 

implemented the one-dimensional normal distribution correctly. Moreover, it also 

confirms that we are able to use the support for various distributions of TensorFlow 

Probability appropriately and we can proceed to a more complicated scenario, which 

involves the multivariate normal distribution. 

3.2.  Multivariate normal distribution 
The case of two observations, where we used a product of two one-dimensional normal 

distributions can be regarded as a special case of the multivariate normal (MV) 

distribution. The MV distribution does not only allow us to conveniently model the 

PDF associated with an several (maybe even thousands of) data points but it also 
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enables the incorporation of correlations between distinct data points. The functional 

form of the MV PDF is given by: 

 

𝑓𝑋(𝑥1, 𝑥2, … , 𝑥𝑘) =

exp (−
1
2

(𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇))

√(2𝜋)𝑘|Σ|
 

 

This distribution is characterized by a center vector 𝜇 and a covariance matrix Σ. If we 

know these two parameters, we can calculate the likelihood for any possible set of 

observations given in the vector 𝑥. 

 

Having established confidence in the ability of TensorFlow to determine the correct 

mean value in the case of one and two observations, we now want to consider a slightly 

different estimation problem: We assume that we know the value of 𝜇 but don’t know 

the uncertainty of the two experimental data points, which we want to estimate. We 

further assume that the unknown standard deviations of the two data points are the 

same. As an aside, in nuclear data evaluation, an analogous (but more complex) 

problem occurs when we have unknown experimental uncertainties and want to adjust 

them so that all experimental datasets are mutually consistent.  

 

We are going to use the tfd.MultivariateNormalDiag function of TensorFlow 

Probability, which can be initialized using the following parameters: 

tfp.distributions.MultivariateNormalDiag( 

    loc=None, 

    scale_diag=None, 

    validate_args=False, 

    allow_nan_stats=True, 

    experimental_use_kahan_sum=False, 

    name='MultivariateNormalDiag' 

) 

 

The “loc” parameter contains establishes the center vector and the “scale_diag” vector 

contains the diagonal elements of the covariance matrix Σ. Note that the diagonal 

elements are given by squared uncertainties (also called variances). The 

tfd.MultivariateNormalDiag class implements the case where all off-diagonal elements 

of the covariance matrix are zero. With this assumption, the PDF of the multivariate 

normal PDF is given by a product of the one-dimensional normal distributions, each 

associated with an observed value in 𝑥. Using this simplifying assumption, it will be 

easier to assess the correctness of the result produced by TensorFlow. 

 

We assume that the values of the two observations are 1 and 5, hence 𝑥 = (1, 5), and 

that the center vector 𝜇 is given by (3, 3). Further we assume that the diagonal elements 

𝑑𝑎𝑟 are given by (𝑑, 𝑑), hence both variances having the same value. We set 𝑑 =  3  as 

starting value. The following TensorFlow program implements the ML principle by 

maximizing the multivariate normal PDF with respect to 𝑑. 

import tensorflow as tf 
import tensorflow_probability as tfp 
import numpy as np 
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import math 
tfd = tfp.distributions 
 
def f(x, mu, dar): 
    dar = tf.repeat(dar, tf.size(mu)) 
    mvn = tfd.MultivariateNormalDiag(mu, dar) 
    y = mvn.log_prob(x) 
    return y 
 
def gradient(x, mu, dar): 
    with tf.GradientTape() as tape: 
        tape.watch(dar) 
        ff = f(x, mu, dar) 
    g = tape.gradient(ff, dar) 
    return g 
 
@tf.function 
def value_and_gradients_function(d): 
    x = tf.constant([1.,5.], dtype=tf.float64) 
    mu = tf.constant(3., dtype=tf.float64) 
    mu = tf.repeat([mu], tf.size(x)) 
    dar = tf.math.abs(d) 
    print(dar) 
    res, grad = -f(x, mu, dar), -gradient(x, mu, dar) 
    return res, grad 
 
di=3 
start = tf.constant([di], dtype=tf.float64) 
 
optres = tfp.optimizer.bfgs_minimize( 
    value_and_gradients_function, 
    initial_position=start, 
    ) 
print(optres) 

 

The output is shown below, indicating the result 𝑑 =  2 (in the “position” variable). 

BfgsOptimizerResults(converged=<tf.Tensor: shape=(), dtype=bool, numpy=True>, 
failed=<tf.Tensor: shape=(), dtype=bool, numpy=False>, num_iterations=<tf.Tensor: 
shape=(), dtype=int32, numpy=6>, num_objective_evaluations=<tf.Tensor: shape=(), 
dtype=int32, numpy=16>, position=<tf.Tensor: shape=(1,), dtype=float64, 
numpy=array([2.])>, objective_value=<tf.Tensor: shape=(), dtype=float64, 
numpy=4.224171427529236>, objective_gradient=<tf.Tensor: shape=(1,), dtype=float64, 
numpy=array([8.8817842e-16])>, inverse_hessian_estimate=<tf.Tensor: shape=(1, 1), 
dtype=float64, numpy=array([[1.0025981]])>) 

 

4. Nuclear data evaluation 

The process of nuclear data evaluation involves gathering appropriate experimental 

data, evaluating their uncertainties, and integrating their information through statistical 

methods to derive dependable estimates and associated uncertainties. In the following 

sections, we explore the application of TensorFlow in slightly more realistic scenarios 
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by using real (meaning not synthetic) experimental data. We will make use of the basic 

building blocks provided by TensorFlow and TensorFlow Probability, introduced in the 

previous section, for this purpose. 

 

4.1. Retrieval of experimental data from the EXFOR database 
We created a Python script for retrieving cross section measurements from the EXFOR 

database [6]. The Experimental Nuclear Reaction Database (EXFOR) is a 

comprehensive collection of experimental datasets with measurements of nuclear 

quantities, such as cross sections, angular distributions, and energy spectra. 

In our Python script, we relied on EXFORTABLES [7] created by Shin Okumura, 

which provides cross sections in tabulated form and is derived from the original 

EXFOR database by using a parsing package written in Python. One objective of this 

package is to facilitate the access to the experimental data in order to enable the 

application of advanced analysis methods, such as those employed in machine learning 

for the discovery of hidden patterns. 

 

The tabular format provided by EXFORTABLES is of the simple form (𝑥, 𝑦, 𝑑𝑥, 𝑑𝑦) 

with 𝑥 being the incident energy, 𝑦 the cross section and 𝑑𝑥 and 𝑑𝑦 the respective 

uncertainties. These files with tabular data in a nested directory structure with different 

levels of the hierarchy indicating the incident particle, nuclide and reaction. An example 

file of EXFORTABLES is shown below: 

# entry-subent-pointer  : 11180-006-0  
# EXFOR reaction        : ['26-FE-56', ['N,TOT'], ',,SIG']  
# incident energy       : 1.0000e-05 MeV - 2.8000e-03 MeV  
# target                : Fe-56  
# product               : -  
# level energy          : -  
# MF-MT number          : 3 - 1  
# first author          : C.T.Hibdon  
# institute             : (1USAANL): Argonne National Laboratory, Argonne, IL  
# reference             : (P,ANL-4963,3,195301)  
# year                  : 1953  
# facility              : (VDG): Van de Graaff  
# git                   : https://github.com/IAEA-
NDS/exfor_master/blob/main/exforall/111/11180.x4  
# nds                   : https://nds.iaea.org/EXFOR/11180 
# 
#       E_in(MeV)       dE_in(MeV)            XS(B)           dXS(B) 
      1.00000E-05      0.00000E+00      1.31000E+01      1.00000E+00 
      2.00000E-05      0.00000E+00      1.20000E+01      1.00000E+00 
      1.26000E-04      0.00000E+00      1.20000E+01      2.00000E+00 
      3.45000E-04      0.00000E+00      1.00000E+01      2.00000E+00 
      2.80000E-03      0.00000E+00      1.00000E+01      3.00000E+00 

 

The following code snippet shows the implementation of the function to extract the 

cross sections (given in column XS) and the associated energies (given in column E_in) 

from EXFORTABLES. We employed “pandas” for combining all EXFORTABLES 

text files, and “os” for locating all files with relevant nuclear data. 
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import tensorflow as tf 
import numpy as np 
import os 
import pandas as pd 
 
def get_experimental_data(path, file_list): 
         
    df2 = pd.DataFrame() 
     
    for e in file_list: 
        info = e.split("_") 
        target = info[0] 
        reaction = info[1] 
        bib = info[2] 
        author, entry, subent, pointer, year = bib.split("-") 
        filename = os.path.join(path, e) 
        #print(filename) 
     
        df = pd.read_csv(filename,  
                        sep="\s+", 
                        index_col=None, 
                        header=None, 
                        usecols=[0, 1, 2, 3], 
                        comment="#", 
                        names=["Energy", "dE", "XS", "dXS"], 
                        ) 
        df["author"] = author 
        df["year"]= year 
         
        df2 = pd.concat([df, df2]) 
     
    file_list = np.array(df2["author"]) 
    E_dash = np.array(df2["Energy"], dtype=np.float64) 
    XS = np.array(df2["XS"], dtype=np.float64) 
    return file_list, E_dash, XS 

 

4.2. Linear interpolation 
Given a computational mesh of energies and associated cross sections, linear 

interpolation can be used to compute the cross-section values of energies that lie in-

between the mesh points. The underlying assumption is that the functional form 

between two consecutive mesh points can be described as a straight line. 

To develop a better intuition, consider the following visual interpretation of the 

interpolation procedure shown in Fig. III. Imagine you have two points on a line, and 

you want to find a point in between them. You would pick the point on the line that 

corresponds to a certain 𝑥-value (indicated by 𝐸’ in the figure) and then determine the 

corresponding 𝑦-value by following the imagined line parallel to the 𝑥-axis until you 

arrive at the 𝑦-axis showing the value (indicated by 𝜇′ in the figure). 
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Figure III: Linear interpolation 

 

 

 

Linear interpolation is useful in nuclear data analysis and visualization to fill in 

missing data points between known values. This is especially helpful in creating 

smooth curves and trends when plotting graphs. If we know 𝐸𝑖, 𝐸𝑖+1, 𝜇𝑖, 𝜇𝑖+1, and 𝐸′, 

we can find 𝜇′ according to 𝐸′. The formula to perform linear interpolation is given 

by: 

 

𝜇′ = 𝜇𝑖 +
𝜇𝑖+1 − 𝜇𝑖

𝐸𝑖+1 − 𝐸𝑖
(𝐸′ − 𝐸𝑖) 

The values 𝐸𝑖 and 𝐸𝑖+1 are consecutive energies on the computational mesh and 𝜇𝑖 and 

𝜇𝑖+1 the corresponding cross section values. The cross-section value 𝜇′ is associated 

with the energy 𝐸′ lying in-between 𝐸𝑖 and 𝐸𝑖+1. 

 

For the implementation of linear interpolation with TensorFlow, we relied on the 

”tf.searchsorted” function. It is used to perform binary search in a sorted array or tensor. 

“tf.gather” is a function in TensorFlow that allows you to gather slices from a tensor 

along a specified axis. In the case of a vector (a one-dimensional tensor), it helps to 

retrieve specific elements based on the provided indices. The Python function making 

use of the TensorFlow functions to implement linear interpolation is given by: 

def linearinterpol(E, mu, E_dash): 
     
    ivec = tf.searchsorted(E, E_dash) - 1 
    mu_i = tf.gather(mu, ivec) 
    mu_ip1 = tf.gather(mu, ivec+1) 
    E_i = tf.gather(E, ivec) 
    E_ip1 = tf.gather(E, ivec+1) 
     
    coeff = (mu_ip1-mu_i)/(E_ip1-E_i) 
    mu_dash = mu_i + coeff * (E_dash-E_i) 
    return mu_dash 

 

4.3. Linear interpolation of nuclear data to find the best 𝜇 
Having explained linear interpolation in general, we want to elaborate on how it can be 

used in the context of nuclear data evaluation. For nuclear data evaluation, one typically 

introduces a computational mesh with the theoretical cross section values. However, 
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experimental data are given at different energies and hence we need to propagate the 

theoretical cross section values to the experimental energies. We can achieve this 

propagation by using linear interpolation as implemented in our Python script above. 

More precisely, we have a theoretical mesh, denoted as 𝐸, and a vector 𝜇 containing 

cross-sections at energies listed in 𝐸. Subsequently, we set up the vector 𝐸′ with 

experimental energies and the vector 𝑋𝑆 with the corresponding cross-section values. 

Once we have obtained the propagated cross section values 𝜇′, we can evaluate the 

multivariate normal distribution function, 𝑁(𝑋𝑆, 𝜇′, 𝑑𝑎𝑟). The chain of operations is 

visualized as a graph in Fig. IV.  

 
Figure IV: Linear interpolation to find the best 𝜇 

 

As in an earlier toy scenario, we employ the function tfd.MultivariateNormalDiag. 

TensorFlow enables us to find appropriate values in the vector 𝜇 and/or in the vector 𝑑 

by optimization. 

5. Demonstration of approach 

Now we combine the retrieval of experimental data, linear interpolation and the 

multivariate normal distribution to perform a schematic nuclear data evaluation. In 

different scenarios, we explore the determination of the mean vector 𝜇, and the diagonal 

elements in the covariance matrix 𝑑𝑎𝑟. 

5.1. Optimization of a scale vector 𝜇 of the multivariate normal distribution 
We want to employ a similar approach as discussed in section 4.3. to find the best 𝜇 

using linear interpolation. We assume that we know 𝐸′, 𝑋𝑆 values because they can be 

retrieved from the EXFORTABLES database. We further assume a computational 

mesh of incident energies 𝐸 with 15 mesh points equally spaced between 0 and 60 

MeV, and that every experimental data point is associated with the same uncertainty 

(standard deviation) given by 𝑑 = 1.  Our goal is to find the optimal value for 𝜇. 

For the demonstration we consider the neutron-induced total cross section of Fe-56. Fe-

56 is an important structural material used in the construction of fission and fusion 

reactors and experiments. Especially, the total cross section is important for calculation 

of material damage. This damage is caused by the interaction of high-energy neutrons 

that may be produced by D-T reactions within the plasma in a fusion device. 

In the following script, we can define the “path” to point to the folder of 

EXFORTABLES containing the total cross section of Fe-56. The script loads the 

experimental data and then determines the optimal values 𝜇 on the computational mesh. 

To achieve this, it employs the “tfp.optimizer.bfgs_minimize” function, linear 

interpolation to propagate the theoretical values the experimental values and the 

tfd.MultivariateNormalDiag TensorFlow function to compute value of the PDF for a 
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given choice of the vector 𝜇. The bfgs_minimize function implements an iterative 

procedure to refine the values in 𝜇 in order to maximize the corresponding value of the 

PDF. We use as starting point “start_mu” a vector that is filled with the value 60.  

import tensorflow as tf 
import tensorflow_probability as tfp 
import os 
import numpy as np 
tfd = tfp.distributions 
import matplotlib.pyplot as plt 
from expdata_utils import linearinterpol 
from expdata_utils import get_experimental_data 
 
path = "D:/nucleardata/exfortables_py/n/Fe-56/n-tot/xs/" 
exfiles = os.listdir(path) 
file_list, E_dash, XS = get_experimental_data(path, exfiles) 
E = np.linspace(0, 60, 15) 
 
def f(x, mu, dar): 
    mu_dash = linearinterpol(E, mu, E_dash) 
    dar = tf.repeat(dar, tf.size(x)) 
    mvn = tfd.MultivariateNormalDiag(mu_dash, dar) 
    y = mvn.log_prob(x) 
    return y 
 
def gradient(x, mu, dar): 
    with tf.GradientTape() as tape: 
        tape.watch(mu) 
        ff = f(x, mu, dar) 
    g = tape.gradient(ff, mu) 
    return tf.convert_to_tensor(g) 
 
@tf.function 
def value_and_gradients_function(mu): 
    dar = tf.constant([1.], dtype=tf.float64) 
    res, grad = -f(XS, mu, dar), -gradient(XS, mu, dar) 
    return res, grad 
 
def find_optimized_mu(start_mu): 
    optres = tfp.optimizer.bfgs_minimize( 
        value_and_gradients_function, 
        initial_position = start_mu, 
        # tolerance=1e-2 
    ) 
    print(optres) 
    return optres.position    
     
if __name__ == "__main__": 
    start_mu = tf.constant([60.]*len(E), dtype=tf.float64)   # mu 
    optimized_mu = find_optimized_mu(start_mu) 
    plt.plot(E, start_mu)  # blue 
    plt.scatter(E_dash, XS)  # blue dots 
    plt.plot(E, optimized_mu)  # orange 
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    #plt.xlim([5,55]) 
    #plt.ylim([0,10]) 
    plt.show() 

 

The following graph shows the result of the optimization procedure. The blue line 

corresponds to the initial vector “start_mu” (filled with the value 60) containing the 

corresponding cross section value for each energy of the computational mesh.  The blue 

dots indicate experimental data points. The orange line indicates the result given by 

optimized values in “mu”, with intermediate values obtained by linear interpolation for 

displaying a continuous curve. We see that the optimized values revert back to the 

starting value above 55 MeV because there is no data to cause the optimization 

procedure to modify the starting values. 

 
Figure V: Comparison of optimization result with experimental data 

 

The following plot shows the same result and data but is restricted to the area 5 ≤ 𝑥 ≤

55 and 0 ≤ 𝑦 ≤ 10 for a more detailed display. The obtained solution aligns well with 

the experimental data. 

 
Figure VI: Comparison of optimization result with experimental data restricted to the 

plotting region [5 ≤ 𝑥 ≤ 55, 0 ≤ 𝑦 ≤ 10] 
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5.2. Obtaining uncertainties 𝑑 of the multivariate normal distribution 

Now we want to consider the case where we know neither the vector 𝜇 nor the variance 

𝑑. 

To address this case, we calculate first the optimized 𝜇 using the code of the previous 

section. Then we keep this obtained value fixed and optimize the function again, but 

now with respect to 𝑑. We further assume two different possible assumptions: 1) Same 

uncertainty 𝑑 for all data points, and 2) an individual uncertainty 𝑑 for each data point. 

The relationship between the variables is depicted in Fig. VII. 

 
Figure VII: The relationship of variables involved in the optimization process 

 

5.2.1. Same uncertainty 𝑑 for all data points 
Let’s first discuss the case where all experimental uncertainties are the same. In the 

Python script, this assumption can be implemented by repeating a single value to fill 

the vector 𝑑𝑎𝑟 whose length is given by the number of experimental data points. We 

implemented this assumption by calling “tf.repeat” inside the function 𝑓𝑑(𝑥, 𝜇, 𝑑). 

Otherwise, the following Python script to implement this scenario is structured in a 

similar way as the examples already discussed before. 

import tensorflow as tf 
import tensorflow_probability as tfp 
import os 
import numpy as np 
tfd = tfp.distributions 
from expdata_utils import linearinterpol 
from expdata_utils import get_experimental_data 
from linearinterpol_Fe56 import find_optimized_mu 
import matplotlib.pyplot as plt 
 
path = "D:/nucleardata/exfortables_py/n/Fe-56/n-tot/xs/" 
exfiles = os.listdir(path) 
file_list, E_dash, XS = get_experimental_data(path, exfiles) 
 
# select expdata in a specific energy interval 
sel = (E_dash > 10) & (E_dash < 20) 
E_dash = E_dash[sel] 
XS = XS[sel] 
 
E = np.linspace(0, 60, 10) 
 
def f_d(x, mu, d): 
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    # use this for individual d for each data point 
    # dar = d 
    ## or this for the same d value for all data points 
    dar = tf.repeat([d], tf.size(XS)) 
    mu_dash = linearinterpol(E, mu, E_dash) 
    mvn = tfd.MultivariateNormalDiag(mu_dash, dar) 
    y = mvn.log_prob(x) 
    return y 
 
def gradient_d(x, mu, d): 
    with tf.GradientTape() as tape: 
        tape.watch(d) 
        ff = f_d(x, mu, d) 
    g = tape.gradient(ff, d) 
    return tf.convert_to_tensor(g) 
 
@tf.function 
def value_and_gradients_function_d(d): 
    dabs = tf.abs(d) 
    res, grad = -f_d(XS, optimized_mu, dabs), -gradient_d(XS, optimized_mu, dabs) 
    return res, grad 
 
def find_optimized_d(start_d): 
    start_d = tf.reshape(start_d, (-1,)) 
    optres = tfp.optimizer.bfgs_minimize( 
        value_and_gradients_function_d, 
        initial_position = start_d, 
        # tolerance=1e-2 
    ) 
    print(optres) 
    return optres.position 
     
if __name__ == "__main__": 
    start_mu = tf.constant([5.]*len(E), dtype=tf.float64)   # mu 
    optimized_mu = find_optimized_mu(start_mu) 
    start_d = tf.constant(1., dtype=tf.float64)   # d 
    # res = value_and_gradients_function_d(start_d) 
    # use the following only for individual d values for each data point 
    # start_d = tf.repeat([start_d], tf.size(XS)) 
    optimized_d = find_optimized_d(start_d) 
         
    plt.errorbar(E_dash, XS, yerr=optimized_d, fmt="o", 
                 alpha=0.2) 
    plt.plot(E, optimized_mu) 
    plt.xlim([10, 20]) 
    plt.ylim([0, 10]) 
    plt.xlabel("energy [MeV]") 
    plt.ylabel("cross section [barn]") 
    plt.show() 

 

The result is shown in Fig. VIII. Clearly, some error bars are too short to be consistent 

with the evaluated curve. Under the constraint that all error bars must be of the same 

size, TensorFlow finds a compromise between data points that are very close to the 
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evaluation and those very far away. This leads to the observed result that for the extreme 

outliers the “compromise” error bars are not large enough. Therefore, we also studied 

the scenario where each data point can have its individual uncertainty, demonstrated in 

the next section.  

 
Figure VIII:  Same uncertainty 𝑑 for all data points 

 

5.2.2. Individual uncertainties 𝑑 for each data point 

Now we allow for each data point having its own individual uncertainty 𝑑. The 

necessary modifications to implement this scenario can be seen in the script provided 

below. Especially, consider the changes in the main block of the program under the “if 

__name__ == "__main__":” statement. 

import tensorflow as tf 
import tensorflow_probability as tfp 
import os 
import numpy as np 
tfd = tfp.distributions 
from expdata_utils import linearinterpol 
from expdata_utils import get_experimental_data 
from linearinterpol_Fe56 import find_optimized_mu 
import matplotlib.pyplot as plt 
 
path = "D:/nucleardata/exfortables_py/n/Fe-56/n-tot/xs/" 
exfiles = os.listdir(path) 
file_list, E_dash, XS = get_experimental_data(path, exfiles) 
 
# select expdata in a specific energy interval 
sel = (E_dash > 10) & (E_dash < 20) 
E_dash = E_dash[sel] 
XS = XS[sel] 
 
E = np.linspace(0, 60, 10) 
 
def f_d(x, mu, d): 
    # use this for individual d for each data point 
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    dar = d 
    ## or this for the same d value for all data points 
    ## dar = tf.repeat([d], tf.size(XS)) 
    mu_dash = linearinterpol(E, mu, E_dash) 
    mvn = tfd.MultivariateNormalDiag(mu_dash, dar) 
    y = mvn.log_prob(x) 
    return y 
 
def gradient_d(x, mu, d): 
    with tf.GradientTape() as tape: 
        tape.watch(d) 
        ff = f_d(x, mu, d) 
    g = tape.gradient(ff, d) 
    return tf.convert_to_tensor(g) 
 
@tf.function 
def value_and_gradients_function_d(d): 
    dabs = tf.abs(d) 
    res, grad = -f_d(XS, optimized_mu, dabs), -gradient_d(XS, optimized_mu, dabs) 
    return res, grad 
 
def find_optimized_d(start_d): 
    start_d = tf.reshape(start_d, (-1,)) 
    optres = tfp.optimizer.bfgs_minimize( 
        value_and_gradients_function_d, 
        initial_position = start_d, 
        # tolerance=1e-2 
    ) 
    print(optres) 
    return optres.position 
       
if __name__ == "__main__": 
    start_mu = tf.constant([5.]*len(E), dtype=tf.float64)   # mu 
    optimized_mu = find_optimized_mu(start_mu) 
    start_d = tf.constant(1., dtype=tf.float64)   # d 
    # res = value_and_gradients_function_d(start_d) 
    # use the following only for individual d values for each data point 
    start_d = tf.repeat([start_d], tf.size(XS)) 
    optimized_d = find_optimized_d(start_d) 
      
    plt.errorbar(E_dash, XS, yerr=optimized_d, fmt="o", 
                 alpha=0.2) 
    plt.plot(E, optimized_mu) 
    plt.xlim([10, 20]) 
    plt.ylim([0, 10]) 
    plt.xlabel("energy [MeV]") 
    plt.ylabel("cross section [barn]") 
    plt.show() 

 

The following plot show the result for the case of individual uncertainties 𝑑 for each 

data point. The error bars of data points further away from the evaluation are larger than 

those for the points closer to it. This is in contrast to the result shown in 5.2.1 where all 

error bars were of equal length. 
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Figure IX: Individual uncertainties 𝑑 for each data point 

 

6. Summary 

The objective of this internship was to explore the suitability of the TensorFlow 

framework in combination with the TensorFlow Probability extension package for the 

purpose of nuclear data evaluation. We based our investigation on the commonly used 

assumption that the experimental data and their uncertainties can be modelled by 

(multivariate) normal distributions. As the core task of nuclear data evaluation is to find 

best estimates and associated uncertainties, we started with the investigation of simple 

toy scenarios using the normal distribution and only one or two observations. In these 

cases, we were able to find analytic solutions to the estimation problems, which served 

as benchmarks for validating the solutions found by numerical optimization with 

TensorFlow. We created Python scripts leveraging TensorFlow probability to solve 

these estimation problems and obtained solutions that were consistent with the 

analytical solutions. 

After we have implemented the probability density functions (PDF) of the normal 

distribution ourselves, we instead adopted the corresponding ready-made distribution 

function provided by TensorFlow Probability and verified their correct usage by 

comparing to the result of one of the simple toy cases before. In general, the ability to 

leverage ready-made implementations of distributions is essential because realistic 

nuclear data evaluation scenarios may require more complicated distributions and we 

want to avoid the need to implement them ourselves. 

After the investigation of these simplistic toy scenarios, we gradually approached more 

realistic evaluation scenarios. We managed to create a Python script to retrieve neutron-

induced total cross section data for Fe-56 from the EXFOR database. For this purpose, 

we leveraged the convenient access to the database provided by EXFORTABLES, 

which exposes the data in tabular files under an intuitive directory structure on the 

computer. 

Usually, one uses a computational energy mesh with corresponding cross sections to be 

estimated and experimental data given on a different energy mesh. Therefore, we 
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discussed linear interpolation and how it can be used to propagate function values from 

a computational mesh to the mesh of the experimental data. We then implemented linear 

interpolation as a Python function using functionality from TensorFlow. 

Finally, we combined all the developed building blocks, which are 1) the capability to 

estimate unknown parameters of a PDF, 2) linear interpolation to propagate cross 

section values from a computational energy mesh to the experimental energies, and 3) 

the ability to retrieve experimental data, to consider an evaluation scenario that is not 

so different anymore from a real nuclear data evaluation scenario. 

Using experimental data for the neutron-induced total cross section of Fe-56, we 

estimated an evaluated curve (the center vector of a multivariate normal distribution) 

based on the experimental data points and assuming that all data points are affected by 

the same and known uncertainty. In a second step, we relied on the obtained evaluated 

curve to estimate the uncertainties of the experimental data points. We studied two 

cases: 1) All of the experimental data points are affected by the same unknown 

uncertainty, and 2) Each data points can have a different uncertainty. We were 

successfully able to determine the solution for both cases. We briefly discussed the 

features of the plots showing the results, especially how the different assumptions affect 

the uncertainties. 

In summary, over the course of the internship, we were able to go from the mathematical 

foundations to an (almost realistic) evaluation scenario. We conclude from our 

investigation that TensorFlow in combination with TensorFlow Probability is indeed a 

powerful framework that can be leveraged to perform nuclear data evaluation. Even 

though, we considered simplified scenarios, it is conceptually straight-forward to 

extend the assumptions by making use of other distributions or optimization algorithms 

provided by TensorFlow and TensorFlow probability.  
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