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Preface

ISOTOPIA is a software package for the prediction of medical isotope production with charged-
particle accelerators. In principle, the isotope yields for any production route with incident protons,
deuterons, tritons, helions or alpha particles, and for natural or enriched targets, can be calculated.
While most computational ingredients for the simulation of isotope-producing accelerators are
rather straightforward, the crucial ingredients for reliable simulation of the isotope yield are nuclear
reaction cross sections. For ISOTOPIA, we use the IAEA medical isotope data library for about
150 reaction channels, complemented by TENDL-2023 for all other reactions.

The idea to construct ISOTOPIA is rooted in the belief that radioisotopes produced with both
reactors and accelerators are needed in the foreseeable future, to ensure that medical diagnosis and
therapy remain successful and economically affordable. Since several years, this issue has entered
the discussion with the need for the replacement of old reactors that produce isotopes. Accelerators,
which are mostly used to produce neutron-poor PET isotopes, and also several therapeutic isotopes,
are now also suggested as a possible alternative production device for “reactor nuclides” with the
99Mo/99mTc generator as the most important case. While this issue has economical, logistic and
political aspects, the current code will at least help to answer its scientific aspects. ISOTOPIA
predicts the production yield of any diagnostic, therapeutic or theranostic isotope with an accelerator.
Obviously, the reliability of that prediction depends strongly on the quality of the nuclear reaction
cross sections. To complete ISOTOPIA, we are working on an extension for isotope production by
a nuclear (research) reactor and via the photonuclear route.

At certain moments in time, a well-defined version of ISOTOPIA is frozen. You are now
reading the tutorial of version 2.0. Future versions should become more and more reliable through
improvements in both the ISOTOPIA code and the underlying cross section and radioactive decay
data libraries.

ISOTOPIA is the engine behind the Medical Isotope Browser, nds.iaea.org/mib, which allows
to analyze production routes in an efficient way via a GUI.
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1. Introduction

There is an increasing demand for radioisotopes for medical diagnosis or therapy. For diagnosis,
almost all radioisotopes fall into the categories of single photon emission computed tomography
(SPECT) or positron emission tomography (PET). Although PET scans are qualitatively superior
and therefore its market is enlarging, the ease of use and cost effectiveness of SPECT, with the
99Mo/99mTc generator as the workhorse, entails that its dominance will probably not disappear in
the coming decade. As a rule of thumb (exceptions exist!) neutron-rich nuclides, often retrieved
as fission products or by neutron capture in a nuclear reactor, are used for SPECT scans while
neutron-poor nuclides, produced with accelerators, are used for PET scans. For therapy, also both
reactor-produced and accelerator-produced isotopes are on the market.

The current version of ISOTOPIA is completely devoted to the production of isotopes with a
charged-particle accelerator. (The underlying physics for isotopes produced with a reactor or by
photonuclear reactions is somewhat different and will be added in a future version).

Often, on the basis of its biological, chemical and nuclear decay properties a radioisotope is
identified as a promising candidate for medical diagnosis or therapy. The subsequent question “Can
we produce that medical isotope with an accelerator?” can usually not be answered by a firm “yes”
or “no” but fragments into several other questions, such as:

• What is the optimal production route for the isotope, i.e., what is the best target + projectile
combination?

• What is the optimal incident beam energy?
• What is the optimal target thickness, or equivalently, what is the projectile energy range

inside the target?
• What is the optimal irradiation time and cooling period?
• What is the isotopic yield during and directly after irradiation and after a cooling period?
• What is the yield of elemental and isotopic impurities after irradiation and after a cooling

period?
• How much do the answers to the above questions depend on the use of an enriched or a
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natural target?
To answer such questions, we have implemented an analytical model which allows to parameterize
the various characteristics of an accelerator + target combination and which calculates the isotopic
yields of various production routes as a function of irradiation time on the basis of modern cross
section and decay data libraries.

Of course, the nuclear physics based answers to the above questions are not the end of the story.
Several questions on economics and logistics (often correlated) need to be answered as well, e.g.

• How many accelerators are needed to meet the current demand?
• What are the logistical implications of the radioactive decay time of the desired product and

its purity, which may depend on the production route?
• What are the costs to make a sufficiently enriched target?

Finally, a political decision to build a production facility is made which may discard the scientific
and economical answers, but we have decided not to touch economical, logistical or political
aspects here and concentrate ourselves on the purely scientific list of bullets above.

As specific features of ISOTOPIA we mention
- Estimation of isotopic yield on the basis of a user-specified accelerator beam current and

energy range, target thickness, irradiation time and cooling period. Covered are incident
protons, deuterons, tritons, helions and alpha particles, on any type of target material.

- The activities of all residual products are presented as yields as a function of irradiation time.
When appropriate, results are averaged over time to obtain the average yield in [MBq/mAh].

- Estimate of simultaneous production of impurities.
- Robustness: thanks to the complete TENDL data library augmented by well-evaluated

reaction channels of the IAEA medical isotope library, ISOTOPIA can be used for the
prediction of any isotope that one is interested in: it is generally applicable and has been
thoroughly tested on a basic quality level.

- A transparent source program.
- Input/output communication that is easy to use and understand.
- A user tutorial.
- A few sample cases.
The starting point of all calculations are cross sections for all reaction channels. They are

obtained from two sources,
• the TENDL-2023 nuclear data library [1], produced by the nuclear reaction model code

TALYS [2],
• the IAEA medical isotope database, high-quality in-depth evaluations of important reaction

channels, on the basis of available experimental data [3, 4, 5, 6].
The current tutorial only describes the ISOTOPIA code and its input and output. We stress

however that a powerful Graphical User Interface has been built around it at IAEA, the Medical
Isotope Browser, nds.iaea.org/mib, which drives the ISOTOPIA code and which is a very efficient
way to study medical isotope production as a function of the accelerator characteristics.

1.1 How to use this tutorial
Although we would be honored if you would read this tutorial from the beginning to the end, we
can imagine that not all parts are necessary, relevant or suitable to you. the contents are as follows:

Chapter 2: Installation guide for ISOTOPIA.
Chapter 3: the main input rules
Chapter 4: General formalism for isotope production.
Chapter 5: The nuclear reaction and structure information needed in the form of cross section
and decay data.
Chapter 6: The reference guide with all the keywords
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Chapter 7: Sample cases and verification.
Chapter 8: Outlook and conclusions.





2. Installation and getting started

2.1 The ISOTOPIA package

In what follows we assume ISOTOPIA will be installed on a Linux or MacOS operating system.
The total ISOTOPIA package is in the isotopia/ directory and contains the following directories
and files:

- LICENSE is the license file,
- README outlines the contents of the package.
- code_build and path_change are scripts that take care of the installation,
- source/ contains the Fortran source code of ISOTOPIA
- files/ contains the natural abundances and the decay data library.
- doc/ contains the documentation: this tutorial in pdf format.
- samples/ contains the input and output files of the sample cases.

Outside isotopia/, you need to have the directory isotopia.libs/ which contains all cross section data.
In fact the place of this directory can be set in the machine.f90 subroutine.

In total, you will need about 20 Gb of free disk space to install ISOTOPIA, which is almost
entirely due to the cross section database in the isotopia.libs/ directory. The code has so far only
been tested on various Linux and MacOS systems, so we can not guarantee that it works on all
operating systems. The only OS dependencies we can think of are the directory separators ’/’ we
use in pathnames that are hardwired in the code. If there is any dependence on the operating system,
the associated statements can be altered in the subroutine machine.f90.

ISOTOPIA has been successfully tested for the gfortran compiler.

2.2 Installation

The installation of ISOTOPIA is straightforward. You can download ISOTOPIA via either git
- git clone https://github.com/arjankoning1/isotopia.git

or by getting the tar file
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- from https://nds.iaea.org/talys/isotopia.tar
- tar zxf isotopia.tar

We here provide the necessary steps to do the installation, For a Unix/Linux system, the installation
is expected to be handled by the isotopia.setup script, as follows

• edit code_build and set the first two variables: the name of your compiler and the place where
you want to store the ISOTOPIA executable.

• code_build isotopia
An alternative installation option is

- cd isotopia/source
- make

If this does not work for some reason, we here provide the necessary steps to do the installation
manually. For a Unix/Linux system, the following steps should be taken:

• cd isotopia/source If code_build has not already replaced the path name in machine.f90, do
it yourself. We think this is the only Unix/Linux machine dependence of ISOTOPIA. We
expect no complaints from the compiler.

• gfortran -c *.f90
• gfortran *.o -o isotopia
• mv isotopia ../bin
The above commands represent the standard compilation options. Consult the tutorial of

your compiler to get an enhanced performance with optimization flags enabled. We note that an
ISOTOPIA run generally takes only less than a second so extreme optimization is not necessary.

2.3 Verification
If ISOTOPIA is installed, testing the sample cases is the logical next step. The samples/ directory
contains the script verify that runs all the test cases. Each sample case has its own subdirectory,
which contains a subdirectory org/, where we stored the input files and our calculated results. It
also contains a subdirectory new, where we have stored the input files only and where the verify
script will produce your output files. A full description of the keywords used in the input files is
given in Chapter 3. Chapter 7 describes all sample cases in full detail. Note that in each subdirectory
a file with differences with our original output is created.

2.4 Getting started
If you have created your own working directory with an input file named e.g. isotopia.inp, then a
ISOTOPIA calculation can easily be started with:

isotopia < isotopia.inp > isotopia.out

where the name isotopia.inp is not obligatory: you can use any name for this file. Besides the
general output file isotopia.out various other output files are produced.



3. Input description

For the communication between ISOTOPIA and its users, we have constructed an input/output
method which shields beginners from all the possible options for parameters that can be specified
in ISOTOPIA, while enabling at the same time maximal flexibility for experienced users.

An input file of ISOTOPIA consists of keywords and their associated values. Before we list all
the input possibilities, let us illustrate the use of the input by the following example. It represents a
minimum input file for ISOTOPIA:

projectile p
element Mo
mass 100
ebeam 16.

This input file represents the simplest question that can be asked to ISOTOPIA: if a 100 % enriched
100Mo target is bombarded by 16 MeV protons, what isotopes are produced as a function of time,
and what is the radioactive yield? Behind this simple input file, however, there are several default
values for the various assumptions, parameters, output flags, etc., that you may or may not be
interested in. When you use a minimal input file like the one above, you leave it to the author of
ISOTOPIA to choose all the parameters for you, including accelerator and target specification, as
well as the level of detail of the output file. If you want to use specific parameters other than the
default, or want to have more specific information in the output file(s), more keywords are required.
Obviously, more keywords means more flexibility and, in the case of adequate use, better results.
For example, one probably would like to enter the accelerator beam current, target size and material
density in the input. In this Chapter, we will first give the basic rules that must be obeyed when
constructing an input file for ISOTOPIA. Next, we give an outline of all the keywords, which have
been categorised in several groups. Finally, we summarize all keywords in one table.
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3.1 Basic input rules

Theoretically, it would be possible to make the use of ISOTOPIA completely idiot-proof, i.e. to
prevent the user from any input mistakes that possibly can be made and to continue a calculation
with “assumed” values. Although we have invested a relatively large effort in the user-friendliness
of ISOTOPIA, we have not taken such safety measures to the extreme limit and ask at least some
minimal responsibility from the user. Once you have accepted that, only very little effort is required
to work with the code. Successful execution of ISOTOPIA can be expected if you stick to the
following simple rules and possibilities of the input file:

1. One input line contains one keyword. Usually it is accompanied by only one value, but some
keywords (e.g. Tcool) need to be accompanied by more than one value on the same line.

2. A keyword and its value(s) must be separated by at least 1 blank character.
3. The keywords can be given in arbitrary order. If you use the same keyword more than once,

the value of the last one will be adopted.
4. All characters can be given in either lowercase or uppercase.
5. A keyword must be accompanied by a value. To use default values, the keywords should

simply be left out of the input file.
6. An input line starting with a # in column 1 is neglected. This is helpful for including

comments in the input file or to temporarily deactivate keywords.
7. A minimal input file always consists of 4 lines and contains the keywords projectile, element,

mass and ebeam. These 4 keywords must be given in any input file.
8. An input line may not exceed 80 characters.

As an example of rules 3, 4, and 6, it can be seen that the following input file is completely
equivalent to the one given in the beginning of this chapter:

Ebeam 16.
Element Mo
MASS 100
projectile p
#rho 5.

In the following erroneous input file, only the second and third lines are correct, while rules 2,
and 5 are violated in the other lines.

Ebeam22.
projectile p
MASS 103
Element

In cases like this, ISOTOPIA will give a specific error message for the first encountered problem
and the execution will be stopped. We like to believe that we have covered all such cases and that it
is impossible to let ISOTOPIA crash (at least with our compilers) without giving an appropriate
error message, but you are of course invited to prove and let us know about the contrary (Sorry, no
cash rewards). Typing errors in the input file should be spotted by ISOTOPIA, e.g. if you write
projjectile d, it will tell you the keyword is not in our list, and the code will gracefully stop.



4. Radioisotope production

This section describes the formalism to calculate the production yield of a radioactive nucleus by a
nuclear reaction. Starting from the general formalism we will introduce realistic approximations
and derive simpler equations that hold in basically all cases of interest. In ISOTOPIA we have
implemented only analytical solutions to the production and depletion equations, which are expected
to be sufficient for isotopes formed by activation. The production via fission to fission products is
not yet included. This may be generalized in future versions.

4.1 Equations for production and depletion of isotopes

In virtually all cases of interest for radioisotope production by means of activation, the temporal
development of a system of isotopes during irradiation can be expressed as follows

NT (t) = N0 e−RT t ,

Np(t) = N0
RT→p

λp−RT
[e−RT t − e−λpt ],

Ni(t) = N0
RT→i

λi−RT
[e−RT t − e−λit ]+N0

RT→pλp→i

λp−RT

[
e−RT t − e−λit

λi−RT
− e−λpt − e−λit

λi−λp

]
,

(4.1)

where,
• NT : the number of target isotopes at any time t,
• Ni: the number of produced isotopes of interest at any time t,
• Np: the number of parent isotopes, possibly feeding into Ni at any time t,
• N0: = NT (t = 0), the initial number of target isotopes,
• λi: total radioactive decay rate for isotope i, respectively, where λi = ln2/Ti,1/2, with Ti,1/2

the half life. Similar for isotope p,
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• λp→i: radioactive decay rate for isotope p decaying to isotope i,
• Ri: total nuclear reaction rate for isotope i. Similar for isotope p,
• Rp→i: partial nuclear reaction rate for parent isotope p to isotope i,

These equations are derived in the Appendix. Note that Eq. (4.1) is more general than what is used
in most analyses. Often the only term that is used is that of a radioactive isotope which is directly
produced from the target and which decays itself, i.e. the first term of the third line (or equivalently,
the second line with p replaced y i). Eq. (4.1) considers, with the first line, the burn-up of the target,
and also, with the second and third lines, the possible production of the isotope of interest via an
indirect route. The rate RT is often very small compared to the irradiation time, of the order of
10−10 s−1, i.e. NT (t)∼ N0 and therefore one often discards the first line of Eq. (4.1). For very high
burn-up it is better to include this though. If there is no indirect feeding via a parent to the final
isotope i, we can also discard the second line and the second term of the last line. With a negligible
RT , Eq. (4.1) will then be be reduced to one term proportional to 1− exp(−λit), which is the one
used in most analyses. We have however implemented the full set of Eq. (4.1).

By setting the derivative of Ni(t) to zero, the irradiation time for which a maximal yield is
obtained can be derived:

tmax =
ln(λi/RT )

λi−RT
(4.2)

Hence, this observable tmax depends on the decay constant λi and the total production rate RT .

4.2 Activities

With Ni(t) known, the expression for the activity Ai of the produced isotope i as a function of the
irradiation time can now be given by

Ai(t) = λi Ni(t). (4.3)

Usually the activity is given in GBq or MBq. For small irradiation times the expression for Ni(t),
Eq. (4.1), behaves as:

Ni(t) = N0 RT→i t, (4.4)

and hence the activity of i as

Ai(t) = λi N0 RT→i t, (4.5)

Under these circumstances, the yield scales linearly with the irradiation time t and the production
rate RT→i. Only then, the production yield expressed in [MBq/mAh] is a meaningful quantity,
which can be used to determine the yield, given a certain irradiation time and beam current.

The formalism given above is still general with respect to the irradiation source. The activation
equations apply to neutron, charged-particle or photon irradiation. It is the production rate R which
differs for the three types of irradiation. It depends on two important ingredients: the particular
geometry-dependent aspects of the reaction rate, and the cross sections. We will now first outline
the expressions for the reaction rate. The cross sections will be discussed in a separate Section.

4.3 Charged-particle irradiation

Now that the analytical formulae for production are set with Eq. (4.1), the remaining ingredients
needed to evaluate Eqs.(4.1) and (4.2) are: NT (0), R, and λ , and this will be done in the next two
sections.
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4.4 Initial condition and stopping power

The number of target atoms at t=0, Nm
T (0), for 1≤ m≤M (with M the number of natural isotopes

constituting the element) equals:

Nm
T (0) =

NA

A
Bm ρ Vtar, (4.6)

where NA = 6.022 1023 is Avogadro’s number, A is the mass number, Bm is the abundance of isotope
m with ∑

M
m Bm = 1, ρ the mass density in [g/cm3], and Vtar the active target volume in [cm3]. Vtar

is given by the product of the beam surface Sbeam in [cm2] and the effective target thickness in [cm],
which can be expressed in terms of the stopping power dE

dx ,

Vtar = Sbeam

∫ Ebeam

Eback

(
dE
dx

)−1

dE, (4.7)

where Ebeam denotes the incident beam energy and Eback is the average projectile energy available
at the backside of the target. If the projectiles travels through the target, the average projectile
beam energy will decrease. The amount of energy loss inside the target is determined by the target
thickness and the stopping power. The integration limits Ebeam and Eback are fixed by the requested
projectile energy range inside the target, which is determined by the cross section as function of
projectile energy (excitation function). This formula neglects the spreading of the beam inside the
target.

The stopping power describes the average energy loss of projectiles in the target by atomic
collisions as a function of their energy in [MeV/cm]. We use the Bethe-Bloch formula [7]:

dE
dx

= 0.1535 ρ
Z
A

z2
p

β 2 [ln
(

2meγ2v2Wmax

I2

)
−2β

2], MeV/cm (4.8)

with Z the target charge number, and zp the projectile charge number, while β represents a beam
particle traveling at a relative velocity

β =
v
c
=

√
Ebeam(Ebeam +2m0c2)

(Ebeam +m0c2)2 , (4.9)

with rest mass m0. Further, me is the electron mass, and γ = 1√
1−β 2

. The maximum energy transfer

in a single collision, Wmax is given by

Wmax = 2mec2(βγ)2, (4.10)

if the incident particle is much heavier than the electron mass. For the mean excitation potential I a
semi-empirical formula is adopted:

I
Z
= 9.76+58.8Z−1.19 eV. (4.11)

This expression is claimed to be tested only if Z ≥ 13, but we use it for all values.
Note that after insertion of the stopping power the mass density ρ cancels out in the final

expression of Eq. (4.6).
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4.5 Nuclear reaction and decay rates

When the full beam hits the target (i.e., assuming that the beam diameter is smaller than the target
dimensions), the production rate in [atoms/s] of isotope i through the nuclear reaction on the target
isotope T is given by the following expression

RT→i =
Ibeam

zp qe

1
Vtar

∫ Ebeam

Eback

(
dE
dx

)−1

σ
rp
i (E) dE (4.12)

where Ibeam is the beam current in [A] and qe is the electron charge. The factor Ibeam/(zpqe)

corresponds to the number of projectiles impinging on the target per [s]. The residual production
cross section of i in [mb] is denoted by σ

rp
i (E).

Analogously, the production rate in [s−1] of all reaction channels, from the target, is given by:

RT =
Ibeam

zp qe

1
Vtar

∫ Ebeam

Eback

(
dE
dx

)−1

(σnon(E)−σin(E)) dE (4.13)

where σnon is the non-elastic cross section and σin is the inelastic cross section of i in [mb]. The
difference σnon−σin provides the probability to create an isotope different from the original target
atom in the nuclear reaction.

The decay rate of i is given by the simple relation

λi =
ln2

T 1/2
i

, (4.14)

where T 1/2
i is the half-life of isotope i in [s]. The λi in the loss term usually feeds only one or two

different channels, namely by beta decay to the ground state or isomer of the daughter isotope d,

λi = λi→d = λ
g.s.
i→d +λ

iso
i→d . (4.15)

With this, all ingredients of Eq. (4.1) are defined and we may calculate the nuclide inventory
Ni(t) at any time during or after the irradiation process.

All quantities needed to calculate the activity are easy to obtain with one exception: the
production cross sections.
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In the previous chapter it was outlined that the entire simulation of isotope production basically
depends on 4 ingredients,

• the solution of the production and decay equations, Eq. (4.1),
• a model for the stopping power, in our case Eq. (4.8),
• a radioactive decay data library,
• a cross section data library,
For the radioactive decay data library, we have taken the JEFF-3.3-RD. For the current version

of ISOTOPIA, all we use is a basic decay mode, i.e. whether it decays via electron or positron
emission along the decay chain, and of course the half life.

The cross section database of ISOTOPIA is a merger of two sources,
• TENDL-2023 [1], is a complete nuclear data library for all projectile, target, product, energy

combinations. For projectiles on any target, cross sections are included for all residual
products which can be produced for incident energies up to 200 MeV. For incident charged-
particles, TENDL has been automatically produced, because the time-consuming nuclide-by-
nuclide adjustment to experimental data has only been performed for incident neutrons so far.
That means that compared to experimental data the TENDL curves can be excellent, good,
reasonable or bad. Statistical analyses of the overall quality, also in comparison with other
high-energy libraries, exist.

• The IAEA Medical Isotope database [3, 4, 5, 6], has been produced by a series of IAEA
collaborations and has resulted in a recommended database for about 150 cross section sets
for important medical isotopes produced by charged-particle induced reactions. For these
reactions, the experimental data were considered to be so abundant and/or of so high quality
that empirical Pade fits were made to produce the final evaluation, and no nuclear model
code was required. This has led to excitation functions for restricted, though often the most
important, nuclides and energy ranges,
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The medical isotope data library for ISOTOPIA is the result of a smooth merger between
these two data libraries. Obviously, TENDL is used for projectiles, targets, products and reaction
channels which do not exist in the IAEA database. For the 150 reaction channels of the IAEA
database, we have complemented the IAEA database by simply normalizing TENDL to the first
and last energy point of the IAEA excitation functions. Often, but not always(!), the most relevant
energy range is considered by the IAEA tables. Of course, for totally new production routes only
the TENDL cross sections are available. Also, though for the about 150 well-known reaction
channels a nuclear model estimate may be redundant, the better a nuclear model code can reproduce
the experimental data or its Pade fit, the more confidence we may have for the other produced
channels for the same reaction, which could represent important impurities to consider.

The combination of IAEA database and TENDL currently may bring the most complete and
best quality library for medical isotope production, but should be improved by adjusting TALYS
nuclear model parameters to better fit experimental data for many nuclides.

5.1 Creation of medical isotope data library

The nuclear data library that is used by ISOTOPIA is called isotopia.libs. For future reference, we
describe here how it is created.

• First, the "raw" data file from the IAEA medical isotope database are renamed to filenames
consistent with the entire system around TALYS. For example, the 100Mo(p,2n)99mTc cross
section is stored in p-Mo100-rp043099m.iaea.med. This is a manual or semi-automated step.

• Next, we rename the headers of the files to bring them in sync with the rest of the libraries/
database. For this we use the script /isotopia/aux/medrename.bash

• To unify with the rest of the database even more, we extend every IAEA file up to 200 MeV,
for which we use /isotopia/aux/medmerge.bash.

• Note that there are various collections of historic IAEA files, for therapeutic, diagnostic,
monitor reactions etc. They all get the treatment mentioned above, and older files are
overwritten with newer files.

• In directory isotopia.libs there is a script create.isotopia.libs. This script basically merges
the latest version of TENDL with the collection of specific IAEA medical isotope files. In
practice this goes as follows: every single reaction file from TENDL is copied, and only
those files which exist in the IAEA database are overwritten by the latter. For completeness,
also all data from the EXFOR database are included.

This process leads to a data library isotopia.libs which has at the highest level the incident particles,

p/
d/
t/
h/
a/

The next level contains the nuclides

....
p/Mo097/
p/Mo098/
p/Mo100/
etc.
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The next level contains the nuclear data library and EXFOR,

p/Mo100/exfor/
p/Mo100/iaea.2109/

All relevant EXFOR data that is available in computational XC4 format is stored in the exfor/
directory. For the particular case of medical isotope production we need only 2 subdirectories

p/Mo100/exfor/xs : the channel cross sections, in particular the non-elastic
p/Mo100/exfor/residual : all residual production cross sections

Next, the iaea directory contains the evaluated nuclear data tabulated per reaction channel in
simple tables. For consistency with the libraries/ database used for other projects we have kept the
same directory structure. For isotopia.libs, we have

p/Mo100/iaea.2109/tables/xs : the non-elastic cross section p-Mo100-MT005.iaea.2019
p/Mo100/iaea.2109/tables/residual : all residual prod. c.s., e.g. p-Mo100-rp043099m.iaea.2019

Finally, as an example of a file with residual production cross sections, p-Mo100-rp043099m.iaea.2019
looks as follows

# p + Mo100 : Production of Tc 99m
# IAEA-MED for 6.000 MeV < 50.000 MeV, extended with TENDL-2023 EVAL-2019
# uncertainties: y
# # energies = 457
# E(MeV) xs(mb) dxs(mb)
6.00000E+00 1.10000E+00 1.10000E+00
6.10000E+00 9.00000E-01 9.00000E-01
6.20000E+00 8.00000E-01 8.00000E-01
6.30000E+00 8.00000E-01 8.00000E-01
6.40000E+00 7.00000E-01 7.00000E-01

..................

where this particular example contains data from the IAEA evaluation, extended with TENDL. By
far, the majority of files come straight from TENDL, as e.g. p-Mo100-rp043098.iaea.2019

# p + Mo100 : Production of Tc 98
# tendl.2023 A.J. Koning EVAL-NOV19
#
# # energies = 31
# E(MeV) xs(mb)
1.68516E+01 0.00000E+00
1.70000E+01 1.10854E+01
1.80000E+01 1.39693E+02
1.90000E+01 3.33590E+02
2.00000E+01 4.91198E+02

..................

In sum, TENDL is used for the energy ranges outside the IAEA evaluations and for all other
isotopes.
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In this part, all ISOTOPIA keywords will be described, one per page. The description of each
keyword is as follows:

• Name of the keyword
• Explanation
• Examples
• Range of allowed values
• Default value
• Comments (optional), when we feel that some extra warnings or explanation for proper use

is appropriate.
In each section, the keywords are roughly ordered by importance, rather than alphabetically. This is
rather subjective of course, but it may make this part a bit more readable. Hence, it could be that
the keywords near the end of certain Chapters are seldom used. In principle, all keywords may be
referred to in the other parts of this tutorial.

6.1 ISOTOPIA keywords

As explained above, the minimum input file has 4 keywords, and leaves all choices for the other
parameters to the author. In general, you probably want to be more specific. Below, we will explain
all the possible keywords. We have classified them according to their meaning and importance.
For each keyword, we give an explanation, a few examples, the default value, and the theoretically
allowed numerical range. Remember that you can always find all adopted default values for all
parameters at the top of the standard output file of ISOTOPIA.
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abundance

File with tabulated abundances. The abundance keyword is only active for the case of a natural
target, i.e. if mass 0. By default, the isotopic abundances are read from the isotopia/files/abundance/
database. It can however be imagined that one wants to analyze production from targets of a certain
isotopic enrichment. On the input line, we read abundance and the filename. From each line of the
file, TALYS reads Z, A and the isotopic abundance with the format (2i4,f11.6). An example of an
abundance file, e.g. abnew, different from that of the database, is

82 206 24.100000
82 207 22.100000
82 208 52.400000

where we have left out the “unimportant” 204Pb (1.4%). ISOTOPIA automatically normalizes the
abundances to a sum of 1, leading in the above case to 24.44 % of 206Pb, 22.41 % of 207Pb and
53.14 % of 208Pb in the actual calculation.

Examples
abundance abnew

Range
abundance can be equal to any filename, provided it is present in the working directory.

Default
If abundance is not given in the input file, abundances are taken from files/abundance and calcula-
tions for all isotopes are performed.
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Adepth

The depth, relative to the target mass number, to which isotopes are scanned for cross sections
that contribute to the production path. For example if Adepth 5 for the p + 100Mo reaction, only
yields for elements defined by Zdepth and isotopes with mass numbers between 95 and 101 will
be calculated.

Examples
Adepth 2
Adepth 10

Range
0 ≤ Adepth ≤ Atarget where Atarget is the mass number of the target.

Default
Adepth 20.
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Area

Area of the target in cm2.

Examples
Area 1.

Range
0 <= Area <= 10000.

Default
Area 10. cm2.
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crosspath

Path for the cross section database. You should have this path hardwired in subroutine machine.f,
but it may be helpful to easily change between different versions of the cross section database.

Examples
crosspath /home/koning/isotopia.libs
crosspath /home/qaim/tendl.2019

Range
crosspath should exist.

Default
Default: crosspath ∼/libraries/
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decay

Flag to include decay from parent nuclide. Used mostly for code diagnostics.

Examples
decay y
decay n

Range
y or n

Default
decay y
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Eback

The lower end of the energy range at the back end of the target in MeV. This energy degradation is
directly related to the effective thickness of the target.

Examples
Eback 130.
Eback 12.

Range
0. ≤ Eback < Ebeam

Default
Eback = Ebeam - 5 MeV.
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Ebeam

The incident energy of the particle beam in MeV.

Examples
Ebeam 140.
Ebeam 16.

Range
Ebeam < 250. MeV.

Default
None.
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element

Either the nuclear symbol or the charge number Z of the target nucleus can be given. Possible
values for element range from Li (3) to C4 (124).

Examples
element pu
element 41
element V
element B9

Range
3≤ element ≤ 124 or Li ≤ element ≤ C4.

Default
None.

Comments
• To accommodate target nuclides with Z > 110 the element names are defined as follows:

Rg(111), Cn(112), Nh(113), Fl(114), Mc(115), Lv(116), Ts(117), Og(118), B9(119), C0-
4(120-124), which takes as a basis for Z = 100 the symbol A0, etc. unless an official name
has been assigned to it, which is currently the case for Z ≤ 118. Clearly, if we ever need or
wish to go beyond Z = 124 , there are enough symbols left. Obviously the symbols for Z
above 118 will be changed as soon as official names are assigned to them.



34 Chapter 6. Reference Guide

Ibeam

Particle beam current in mA.

Examples
Ibeam 0.1
Ibeam 5.

Range
0 <= Ibeam <= 10000.

Default
Ibeam 1. mA.
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mass

The target mass number A. The case of a natural element can be specified by mass 0. Then,
an ISOTOPIA calculation for each naturally occurring isotope will be performed (see also the
abundance keyword, p. 26), after which the results will be properly weighted and summed.

Examples
mass 112
mass 0

Range
mass 0 or 5 < mass ≤ 339. The extra condition is that the target nucleus, i.e. the combination of
mass and element must be present in the cross section database, which corresponds to all nuclei
with a half life longer than 1 day.

Default
None.
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outcross

Flag to output cross sections to separate files.

Examples
outcross y
outcross n

Range
y or n

Default
outcross n
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projectile

Five different symbols can be given as projectile, namely p, d, t, h, a representing proton, deuteron,
triton, 3He, and alpha, respectively.

Examples
projectile p
projectile d

Range
projectile must be equal to p, d, t, h, a.

Default
None.
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radiounit

Unit for radioactivity, to be used in the output files for isotope production.

Examples
radiounit Bq: Becquerel
radiounit kBq: kiloBecquerel
radiounit MBq: MegaBecquerel
radiounit GBq: GigaBecquerel
radiounit Ci: Curie
radiounit mCi: milliCurie
radiounit kCi: kiloCurie

Range
radiounit should be equal to one of the units above.

Default
radiounit Mbq.
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rho

Material density of the target in g/cm3.

Examples
rho 10.

Range
0 <= rho <= 100.

Default
rho is read from a hardwired material density table.
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Tirrad

Irradiation time. A general input for the irradiation time has been enabled. On the input line we
read integer values and time units, which can be y (years), d (days), h (hours), m (minutes) or s
(seconds). These all need to be separated by blanks.

Examples
Tirrad 2 d 5 h
Tirrad 32 h 30 m
Tirrad 1 d 6 h 24 m 12 s

Range
0 <= Tirrad <= 1e6 for every time unit.

Default
Tirrad 1 d.
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Tcool

Target cooling time. A general input for the cooling time has been enabled. On the input line we
read integer values and time units, which can be y (years), d (days), h (hours), m (minutes) or s
(seconds). These all need to be separated by blanks.

Examples
Tcool 2 d 5 h
Tcool 32 h 30 m
Tcool 1 d 6 m 24 m 12 s

Range
0 <= Tcool <= 1e6 for every time unit.

Default
Tcool 1 d.
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xsfile

Local file with cross sections. With this keyword, residual production cross sections from TENDL
can be overruled with values given in your working directory. On the input line, we read xsfile,
Z and A of the residual product, the filename, and optionally the number of the produced isomer.
This file should consist of Energy [MeV] - cross section [mb] values in x-y form, with a similar
structure as those of the cross section database.

Examples
xsfile 25 56 Mn56.exp
xsfile 42 100 Mo100.loc 1

Range
xsfile should exist.

Default
None.
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yieldunit

Unit for isotope yield, in weight or number of isotopes.

Examples
yieldunit mug: microgram
yieldunit mg: milligram
yieldunit g: gram
yieldunit kg: kilogram
yieldunit num: number of isotopes

Range
yieldunit should be equal to one of the units above.

Default
yieldunit num.



44 Chapter 6. Reference Guide

ZAoutput

Flag to use numerical Z and A values in the filenames instead of nuclide names.

Examples
ZAoutput y
ZAoutput n

Range
y or n

Default
ZAoutput n



6.1 ISOTOPIA keywords 45

Zdepth

The depth, relative to the target charge number, to which isotopes are scanned for cross sections
that contribute to the production path. For example if Zdepth 2 for the p + Mo reaction, only yields
for Tc, Mo, Nb and Zr isotopes will be calculated.

Examples
Zdepth 2
Zdepth 10

Range
0 ≤ Zdepth ≤ Ztarget where Ztarget is the mass number of the target.

Default
Zdepth 10.
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Table 6.1: The keywords of ISOTOPIA.

Keyword Range Default Page
abundance filename no default 26
Adepth 0-Atarget 20 27
Area 0. - 10000. 10. 28
crosspath directory name /̃libraries/ 29
decay y,n y 30
Eback 1.e-11 - 200. Ebeam - 5 31
Ebeam 1.e-11 - 200. None 32
element 3 - 124 or Li - C4 None 33
Ibeam 0. - 10000. 10. 34
mass 0, 5 - 339 None 35
outcross y,n n 36
projectile p,d,t,h,a, None 37
radiounit (k,M,G)Bq, (m,k)Ci Gbq 38
rho 0. - 100. 1. 39
Tirrad 0 - 1.e6 1 d 40
Tcool 0 - 1.e6 1 d 41
xsfile file name none 42
yieldunit num, mug, mg, g or kg num 43
ZAoutput y,n n 44
Zdepth 0-Ztarget 10 45



7. Sample cases

The purpose of ISOTOPIA is that every imaginable production route for a medical isotope can
be simulated. To strengthen this statement, we will discuss many different sample cases. In each
case, the ISOTOPIA input file, the relevant output and if appropriate, a figure will be presented.
The description of the first sample case is the longest, since the output of ISOTOPIA will be
discussed in complete detail. Obviously, that output description is also applicable to the other
sample cases. The entire collection of sample cases serves as (a) verification of ISOTOPIA: the
sample output files should coincide, apart from numerical differences of insignificant order, with
the output files obtained by you, and (b) validation of ISOTOPIA: the results should be comparable
to those obtained in other publications. The computation time of ISOTOPIA is very short, i.e. you
can wait on the results of the sample cases. In general, we will explain the keywords again as
they appear in the input files below. If not, consult Table 6.1, which will tell you where to find the
explanation of a keyword.

7.1 Sample p-Mo100-Tc099m: Accelerator production of 99mTc

This sample case considers one of the most discussed alternatives for reactor-produced 99Mo: the
direct production of 99mTc from 100Mo with a proton accelerator via the (p,2n) reaction. The input
file for this case is as follows,

projectile p
element Mo
mass 100
Ebeam 16.
Eback 12.
Ibeam 0.015
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Running this input file with

isotopia < input > output

gives an output file with the general characteristics of the reaction. The output file starts with a
display of the version of ISOTOPIA you are using, the name of the author, the Copyright statement
and then an exact copy of the input file as given by the user is returned.

ISOTOPIA-2.0 (Version: December 29, 2023)

Prediction of medical isotope production with accelerators

Copyright (C) 2023 A.J. Koning

########## USER INPUT ##########

USER INPUT FILE

projectile p
element mo
mass 100
ebeam 16.
eback 12.
ibeam 0.15

In the next block a table with all keywords is given,

USER INPUT FILE + DEFAULTS

Keyword Value Variable Explanation

user Arjan Koning user user for this calculation
source ISOTOPIA source source for this calculation
format YANDF-0.1 oformat format for output
#
# Nuclear reaction
#
projectile p ptype0 type of incident particle
element Mo Starget symbol of target nucleus
mass 100 Atarget mass number of target nucleus
#
# Accelerator
#
Ebeam 16.000 Ebeam incident energy in MeV
Eback 12.000 Eback lower end of energy range in MeV
Ibeam 0.150 Ibeam beam current in mA
Tirrad 1 Tirrad d of irradiation time
radiounit gbq radiounit unit for radioactivity
yieldunit num yieldunit unit for isotope yield
#
# Target
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#
Area 1.000 Area target area in cm^2
Tcool 1 Tcool d of cooling time
rho -1.000 rhotarget target density [g/cm^3]
#
# Cross section and decay data
#
Zdepth 10 Zdepth depth to which Z numbers are scanned for cross sections
Adepth 20 Adepth depth to which A numbers are scanned for cross sections

not only the ones that you have specified in the input file, but also all the defaults that are set auto-
matically. The corresponding Fortran variables are also printed, together with a short explanation
of their meaning. This table can be helpful as a guide to change further input parameters for a next
run. You may also copy and paste the block directly into your next input file.

In the next output block we print the main parameters that characterize the production process.
Note that some of these have been given in the input, while others are automatically calculated.

Summary of isotope production for p + Mo100

Maximal irradiation time: 0 years 1 days 0 hours 0 minutes 0 seconds
Cooling time: 0 years 1 days 0 hours 0 minutes 0 seconds
E-beam [MeV]: 1.600000E+01
E-back [MeV]: 1.200000E+01
Beam current [mA]: 0.150 mA
Target material density [g/cm^3]: 1.022000E+01
Target area [cm^2]: 1.000000E+00
Effective target thickness [cm]: 2.098548E-02
Effective target volume [cm^3]: 2.098548E-02
Effective target mass [g]: 2.144716E-01
Number of target atoms: 1.291577E+21
Number of incident particles [s^-1]: 9.362260E+14
Produced heat in target [kW]: 6.000000E-01

The block with final results is

(Maximum) production and decay rates per isotope

Total production rate [s^-1]: 9.963947E-10

# Nuc Production rate Decay rate Activity #isotopes Yield
# [s^-1] [s^-1] [GBq] [ ] [GBq/mAh]
Tc 101 9.179428E-13 8.135531E-04 1.185574E+00 1.457280E+12 3.452646E-03
Tc 100 5.858265E-11 4.387007E-02 7.566389E+01 1.724727E+12 2.919132E-01
Tc 99 8.327918E-10 1.026401E-13 2.617423E+02 7.882537E+16 7.360589E-10

..................
End of ISOTOPIA calculation for p + Mo100

The time-dependent production of each isotope is found the files ZZAAA.act or ZZAAAm.act
if is concerns isomeric production, with ZZ the charge number in (i2.2) format and AA the mass
number in (i3.3) format.

For this case, obviously most important is the production of 99mTc, given in file Tc099m.act,
which looks as follows,



50 Chapter 7. Sample cases

# header:
# title: Mo100(p,x)Tc99 m Isotope production
# source: ISOTOPIA
# user: Arjan Koning
# date: 2023-12-18
# format: YANDF-0.1
# target:
# Z: 42
# A: 100
# nuclide: Mo100
# reaction:
# type: (p,x)
# ENDF_MF: 6
# ENDF_MT: 5
# residual:
# Z: 43
# A: 99
# nuclide: Tc99 m
# parameters:
# Beam current [mA]: 1.500000E-01
# E-Beam [MeV]: 1.600000E+01
# E-Back [MeV]: 1.200000E+01
# Initial production rate [s^-1]: 2.162432E-10
# Decay rate [s^-1]: 3.203675E-05
# Initial production yield [GBq/mAh]: 5.803020E-02
# Total activity at EOI [GBq]: 2.617423E+02
# Irradiation time: 0 years 1 days 0 hours 0 minutes 0 seconds
# Cooling time: 0 years 1 days 0 hours 0 minutes 0 seconds
# Half-life: 0 years 0 days 6 hours 0 minutes 36 seconds
# Maximum production at: 0 years 3 days 17 hours 59 minutes 18 seconds
# datablock:
# quantity: Isotope production
# columns: 6
# entries: 100
## Time Activity Isotopes Yield Isotopic frac. Time
## [h] [GBq] [] [GBq] [] []

1.728000E+03 1.504143E+01 4.695054E+14 5.803020E-02 1.253925E-01 4.800000E-01
3.456000E+03 2.927278E+01 9.137248E+14 5.490489E-02 1.224671E-01 9.600000E-01
5.184000E+03 4.273767E+01 1.334020E+15 5.194787E-02 1.196022E-01 1.440000E+00
6.912000E+03 5.547738E+01 1.731679E+15 4.915014E-02 1.168144E-01 1.920000E+00
8.640000E+03 6.753098E+01 2.107922E+15 4.650304E-02 1.141058E-01 2.400000E+00

.....................

In the file above, the general irradiation characteristics are repeated, as well as the total
production rates. The activity as a function of time is presented in Fig. 7.1. Note that the production
yield decreases as a function of time since 99mTc has a half life of 6 hours. Also the last column in
this file can be related to the purity or specific activity of 99mTc relative to the other Tc isotopes and
99cTc.

Note that the directory also lists the following files

Mo099.act
Mo100.act
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Figure 7.1: Production of Tc-99m

Tc099.act
Tc099g.act
Tc099m.act
Tc100.act
Tc101.act

which represent the isotopes, of which some can be regarded as ’impurities’, which are produced
simultaneously.

7.2 Sample a-Bi209-At211: alpha-induced production of therapeutic nuclide
211At

This production route is listed in Table 1 of Ref. [8]. The corresponding input file for this case is

projectile a
element Bi
mass 209
Ebeam 28.
Eback 10.
Ibeam 0.015

Ref. [8] lists an initial production yield of 17.5 Mbq/(µA.h), while ISOTOPIA produces a value
of 22.5, see the output file. Note that there is still some uncertainty with regards to the production
cross section.

7.3 Sample p-Ga069-Ge068: Production of the 68Ge generator for 68Ga

There are various production routes for this isotope. The input file for this case is

projectile p
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element Ga
mass 69
Ebeam 25.
Eback 15.
Tirrad 7 d
radiounit Ci
outcross y

Note that in this input file we have include some other features of ISOTOPIA, which of course
can also be used in all other input files. The irradiation time is 7 days, while we request the output
to be in Ci instead of GBq. In this case, the output file of most interest is probably Ge068.act. Also,
all residual production cross sections for this reaction are printed in separate files.

7.4 Sample p-Th232-Ac225: Production of 225Ac from 232Th

As an example of the high-energy end of the domain of ISOTOPIA, we include the following
sample case,

projectile p
element Th
mass 232
Ebeam 192
Eback 170.
Ibeam 0.10

Note that activation files for many isotopes are produced. The higher the incident energy, the
more side-products are made, and many of them could be unwanted.



8. Outlook and conclusions

This tutorial describes ISOTOPIA-2.0, a software package for the prediction of medical isotope
production using an accelerator.

The formalism employed in version 2.0 to calculate all isotopic activity yields, is based on
the direct production and β -decay of the isotopes. Feeding of the isotope through β -decay of
other nuclei produced in the nuclear reactions is taken into account for one parent nuclide only,
which for charged-particle induced reactions is generally sufficient. In general, one would like to
include the processes of all β -decay feeding as well as nuclear reactions of already produced nuclei
(which occurs at a high target burn-up) in an exact calculation. This can only be achieved by fully
simulating the radiation transport and the burn-up of the target. For most cases of interest, this
is however not necessary. Nevertheless, we may upgrade ISOTOPIA with a general differential
equation solver in the future.

ISOTOPIA is complete in the sense that it produces results for all possible isotope production
paths. The quality of the prediction is directly related to the current quality of the cross section
database. The backbone of the cross section database is TENDL-2023. TENDL is gradually
transforming from a calculated data library into an evaluated data library. This means that in addition
to global theoretical improvements in the TALYS code, an increasing number of experimental cross
section sets will be taken into account in future versions of TENDL. Until that time, and probably
also after, the addition of the IAEA medical isotope database is indispensable.

In terms of functionality, we can think of at least one obvious extension, which is the ability
to answer the “inverse question”: Given a desired isotope, how do the various production routes
relate to each other, in terms of projectile type, energy ranges, impurities, etc. and what is the
optimal production route? In the current version of ISOTOPIA, we can only perform the “forward
route”: on the basis of an intuitively promising production route, we calculate all results of interest.
A loop over the entire ISOTOPIA code needs to be built for this extension, after which a clever
optimization (search) routine would provide the answer. Given the short calculation time of a
typical ISOTOPIA run, this looks feasible.
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Another addition is to allow calculations with multiple incident energies. At the moment only
one incident energy is given. If an incident energy grid would be given, the production yield as a
function of incident energy can be calculated in one run, rather than performing several ISOTOPIA
runs for each incident energy.

Finally, at the moment ISOTOPIA can only be used for charged-particle accelerator beams.
With the addition of photonuclear and neutron (e.g. from a reactor) induced reactions it would
become a “complete” isotope production code. Two issues need to be solved for that:

• For photonuclear reactions: the equivalent of stopping power for charged-particles needs to
be taken into account

• For neutron-induced reactions: a folding over the (reactor) spectrum needs to be included.
Both extensions seem to be feasible, at first sight.
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A. Derivation of the isotope production equations

A.1 Differential equations for production and depletion of isotopes

The most general situation is that of the irradiation of a piece of material, consisting of many
different isotopes, which were either present at the start of the irradiation, have been formed, or
will be formed during the irradiation, by either the primary flux of particles, by secondary particles,
or by radioactive decay. If we have a total of K different isotopes and the number of each isotope k
is Nk, then the temporal development of such a system, during irradiation and decay, is described
by K differential equations:

dN1(t)
dt

=
K

∑
k=1,k 6=1

Λk→1Nk(t)−Λ1N1(t)

. . .

dNi(t)
dt

=
K

∑
k=1,k 6=i

Λk→iNk(t)−ΛiNi(t)

. . .

dNK(t)
dt

=
K

∑
k=1,k 6=K

Λk→KNk(t)−ΛKNK(t) (A.1)

In each equation, the first term is a feeding term. In the most general case, various parent nuclides
k may contribute to the formation of isotope i, hence the summation over k, with Λk→i the partial
formation rate for any possible parent isotope k to isotope i. Each partial formation rate can be
expressed as

Λk→i = λk→i +Rk→i (A.2)

with λk→i the (partial) radioactive decay rate and Rk→i the (partial) nuclear reaction rate for any
possible parent isotope k to isotope i. The second terms of Eq. (A.1) are loss terms due to
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radioactive decay and nuclear reactions from isotope i to any other isotope. Here the total depletion
rate (we interchange “depletion” with “formation” whenever appropriate) for isotope i is

Λi = λi +Ri (A.3)

where the total decay rate for isotope i is

λi =
K

∑
k=1,k 6=i

λi→k

and the total nuclear reaction rate for isotope i is

Ri =
K

∑
k=1,k 6=i

Ri→k (A.4)

The entire loop over k may run over isotopes in their ground or isomeric states. Theoretically,
the sum over reaction rates could include secondary particles (neutrons, photons, alpha particles
etc.) formed after the first interaction of the incident beam with the material, over the entire
outgoing energy spectrum. Since the number of isotopes i, Ni(t) may appear simultaneously in
many equations, due to its possible formation, or depletion, by many different nuclear reactions, it is
clear that such a coupled system can only be solved by complicated mathematical and computational
techniques. In fact, the most exact simulation would involve a Monte Carlo 3D transport calculation
in which all primary and secondary particles are taken into account, including complete cross
section libraries for all possible particles, coupled with an activation code that keeps track of the
nuclide inventory. If we neglect such thick target transport issues, a system of equations like (A.1)
is often solved by methods developed by Bateman [9] for radioactive decay and later generalized
for source terms by Rubinson [10].

Fortunately, the situation is often not as complex as sketched above, since very reasonable
approximations can be introduced into Eq. (A.1), which represent cases which are used in practice.
First, let us start with the common case of the irradiation of a target which contains of only one
natural element at the start of the irradiation. This set of equations can be then be separated into
a linear combination of contributions by each target isotope. Hence, we solve Eq. (A.1) one by
one for each target isotope and add these contributions at the end to get the activation for the target
material. Then, for such a mono-isotopic target T we have at the start of the irradiation

t = 0 : NT = NT (0) = N0

Ni = 0

. . .

NK = 0 (A.5)

Since in practice our target isotope is not radioactive, the loss terms reduce to ΛT = RT in Eq.
(A.1) for NT . Next, if a substantial part of the target is converted into other isotopes, beam particles
may interact with atoms other than the original target atoms. However, this is only a concern for
very long irradiation times. For most practical applications, like medical isotope production, we
can often assume that the burn-up of the target is small and that the target composition does not
change much during the irradiation (this will be confirmed by some of our sample cases). Hence, in
addition we will assume there are no nuclear reaction or radioactive decay feeding terms for the
target isotope T .
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This means that the temporal evolution of the target isotope is described by the following simple
equation

dNT (t)
dt

=−RT NT (t) (A.6)

which basically states that the only thing that happens to the target material is burn-up through
nuclear reactions.

For the isotopes that are produced during the irradiation, which are of course more interesting,
we can make similar reasonable assumptions. We assume there is no loss of produced isotopes of
interest through nuclear reactions with beam particles, i.e. we assume nuclides which are produced
are not hit twice (again, this assumption becomes less accurate at very long irradiation times). This
is equivalent to stating that the isotopes of interest are only produced from nuclear reactions on
the target isotopes or from decay of other products formed during the irradiation. Also, consistent
with the assumption for the target isotope that nuclides are not hit twice, we have Λi = λi for the
depletion term, and assume that no other nuclear reactions lead to the isotope of interest. Thus for
the produced isotopes i we obtain

dNi(t)
dt

=
K

∑
k=1,k 6=i

λk→iNk(t)+RT→iNT (t)−λiNi(t) (A.7)

Nuclides often have only one or a few radioactive decay modes. Usually, only beta decay to the
ground state or an isomer needs to be considered, although in some cases alpha decay may occur as
well. If we neglect alpha decay, the summation in the first term above reduces to only one term.
Thus, Eq. (A.7) reduces to

dNi(t)
dt

= λp→iNp(t)+RT→iNT (t)−λiNi(t) (A.8)

where we now use the subscript p for the parent isotope which decays to isotope i. The parent
isotope itself is produced from nuclear reactions on the target and is described by the equation,

dNp(t)
dt

= RT→pNT (t)−λpNp(t) (A.9)

where for simplicity we have left out a possible feeding term λg→pNg(t) from its own parent (i.e.
the grandparent g of isotope i). It neglects radioactive decay to channels produced by multiple
proton emission, e.g. 120Te(p,2p)119Sb and the contribution from its feeding channel 120Te(p,2n)119I
+ 2β+. Although the (p,2p) channel is generally smaller and therefore often not relevant for most
practical medical isotope production routes, it would be safer that at higher energies feeding from
radioactive decay is taken into account. For that a more general solution of Eq. (A.1) would have
to be implemented, similar to solutions for neutron-induced problems where processes like e.g.
multiple decay of fission fragments needs to be taken into account. For most charged-particle
induced reactions of interest, the current approximation is justified.

A.2 Solution of the differential equations

Here we derive the solutions (4.1) of the differential equations (A.6)-(A.9). Eq. (4.1) has been
implemented in ISOTOPIA.

For the target nuclide we have

dNT (t)
dt

=−RT NT (t). (A.10)
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This is easily integrated to give

NT (t) = N0 e−RT t . (A.11)

For every parent nuclide we have

dNp(t)
dt

= RT→pNT (t)−λpNp(t). (A.12)

Multiplying both sides with eλpt gives

eλpt dNp(t)
dt

= eλpt [RT→pNT (t)−λpNp(t)] , (A.13)

or,

eλpt dNp(t)
dt

+ eλpt
λpNp(t) = eλptRT→pNT (t), (A.14)

or,

d[eλptNp(t)]
dt

= eλptRT→pNT (t). (A.15)

Integrating this, after insertion of Eq. (A.11), gives

eλptNp(t) = N0RT→p

∫
dte(λp−RT )t

=
N0RT→p

λp−RT
e(λp−RT )t +C, (A.16)

or,

Np(t) =
N0RT→p

λp−RT
e−RT t +Ce−λpt . (A.17)

Inserting the initial condition Np(t = 0) = 0 gives

0 =
N0RT→p

λp−RT
+C, (A.18)

giving the solution for the parent nuclide,

Np(t) =
N0RT→p

λp−RT

[
e−RT t − e−λpt

]
. (A.19)

For every isotope i, directly produced by a nuclear reaction on the target isotope or from decay
of the parent nuclide, we have

dNi(t)
dt

= λp→iNp(t)+RT→iNT (t)−λiNi(t). (A.20)

Multiplying both sides with eλit gives analogous to Eqs. (A.13)-(A.15),

d[eλitNi(t)]
dt

= eλit [λp→iNp(t)+RT→iNT (t)] , (A.21)
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or, after insertion of the solutions for NT , Eq. (A.11), and Np, Eq. (A.19),

d[eλitNi(t)]
dt

= eλit
[

λp→i
N0RT→p

λp−RT
(e−RT t − e−λpt)+N0RT→ie−RT t .

]
(A.22)

Integrating this gives

eλitNi(t) =
N0λp→iRT→p

λp−RT

[∫
dte(λi−RT )t +

∫
dte(λi−λp)t

]
+ N0RT→i

∫
dte(λi−RT )t +C, (A.23)

or,

Ni(t) =
N0λp→iRT→p

λp−RT

[
e−RT t

λi−RT
+

e−λp)t

λi−λp

]
+

N0RT→i

λi−RT
e−RT t +Ce−λit . (A.24)

Inserting the initial condition Ni(t = 0) = 0 gives

0 =
N0λp→iRT→p

λp−RT

[
1

λp−RT
+

1
λi−λp

]
+

N0RT→i

λi−RT
+C, (A.25)

so we finally obtain

Ni(t) = N0
RT→i

λi−RT
[e−RT t− e−λit ]+N0

λp→iRT→p

λp−RT

[
e−RT t − e−λit

λi−RT
− e−λpt − e−λit

λi−λp

]
. (A.26)

The three solutions of interest are thus given by Eqs. (A.11), (A.19), and (A.26).
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